[patch 10/10] Remove slab in 2.6.24

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



The SLAB functionality has been supplanted by SLUB. Benefits of SLUB

- More compact data store. Less cache footprint
- Reporting function and tools
- Higher speed
- Eliminate SLAB bitrot

Signed-off-by: Christoph Lameter <[email protected]>

---
 fs/proc/proc_misc.c  |   47 
 include/linux/slab.h |   18 
 init/Kconfig         |   26 
 lib/Kconfig.debug    |   17 
 mm/Makefile          |    4 
 mm/slab.c            | 4448 ---------------------------------------------------
 6 files changed, 2 insertions(+), 4558 deletions(-)

Index: linux-2.6.22-rc6-mm1/include/linux/slab.h
===================================================================
--- linux-2.6.22-rc6-mm1.orig/include/linux/slab.h	2007-07-05 23:28:12.000000000 -0700
+++ linux-2.6.22-rc6-mm1/include/linux/slab.h	2007-07-05 23:36:12.000000000 -0700
@@ -16,7 +16,6 @@
 
 /*
  * Flags to pass to kmem_cache_create().
- * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  */
 #define SLAB_DEBUG_FREE		0x00000100UL	/* DEBUG: Perform (expensive) checks on free */
 #define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
@@ -154,11 +153,7 @@ size_t ksize(const void *);
  * See each allocator definition file for additional comments and
  * implementation notes.
  */
-#ifdef CONFIG_SLUB
 #include <linux/slub_def.h>
-#else
-#include <linux/slab_def.h>
-#endif
 
 /**
  * kcalloc - allocate memory for an array. The memory is set to zero.
@@ -256,14 +251,9 @@ static inline void *kmem_cache_alloc_nod
  * allocator where we care about the real place the memory allocation
  * request comes from.
  */
-#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
 extern void *__kmalloc_track_caller(size_t, gfp_t, void*);
 #define kmalloc_track_caller(size, flags) \
 	__kmalloc_track_caller(size, flags, __builtin_return_address(0))
-#else
-#define kmalloc_track_caller(size, flags) \
-	__kmalloc(size, flags)
-#endif /* DEBUG_SLAB */
 
 #ifdef CONFIG_NUMA
 /*
@@ -274,22 +264,16 @@ extern void *__kmalloc_track_caller(size
  * standard allocator where we care about the real place the memory
  * allocation request comes from.
  */
-#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *);
 #define kmalloc_node_track_caller(size, flags, node) \
 	__kmalloc_node_track_caller(size, flags, node, \
 			__builtin_return_address(0))
-#else
-#define kmalloc_node_track_caller(size, flags, node) \
-	__kmalloc_node(size, flags, node)
-#endif
-
 #else /* CONFIG_NUMA */
 
 #define kmalloc_node_track_caller(size, flags, node) \
 	kmalloc_track_caller(size, flags)
 
-#endif /* DEBUG_SLAB */
+#endif /* CONFIG_NUMA */
 
 /*
  * Shortcuts
Index: linux-2.6.22-rc6-mm1/init/Kconfig
===================================================================
--- linux-2.6.22-rc6-mm1.orig/init/Kconfig	2007-07-05 23:30:11.000000000 -0700
+++ linux-2.6.22-rc6-mm1/init/Kconfig	2007-07-06 09:14:48.000000000 -0700
@@ -594,38 +594,12 @@ config VM_EVENT_COUNTERS
 config SLUB_DEBUG
 	default y
 	bool "Enable SLUB debugging support" if EMBEDDED
-	depends on SLUB
 	help
 	  SLUB has extensive debug support features. Disabling these can
 	  result in significant savings in code size. This also disables
 	  SLUB sysfs support. /sys/slab will not exist and there will be
 	  no support for cache validation etc.
 
-choice
-	prompt "Choose SLAB allocator"
-	default SLUB
-	help
-	   This option allows to select a slab allocator.
-
-config SLAB
-	bool "SLAB"
-	help
-	  The regular slab allocator that is established and known to work
-	  well in all environments. It organizes cache hot objects in
-	  per cpu and per node queues. SLAB is the default choice for
-	  a slab allocator.
-
-config SLUB
-	bool "SLUB (Unqueued Allocator)"
-	help
-	   SLUB is a slab allocator that minimizes cache line usage
-	   instead of managing queues of cached objects (SLAB approach).
-	   Per cpu caching is realized using slabs of objects instead
-	   of queues of objects. SLUB can use memory efficiently
-	   and has enhanced diagnostics.
-
-endchoice
-
 config PROC_SMAPS
 	default y
 	bool "Enable /proc/pid/smaps support" if EMBEDDED && PROC_FS && MMU
Index: linux-2.6.22-rc6-mm1/mm/Makefile
===================================================================
--- linux-2.6.22-rc6-mm1.orig/mm/Makefile	2007-07-05 23:29:47.000000000 -0700
+++ linux-2.6.22-rc6-mm1/mm/Makefile	2007-07-05 23:30:07.000000000 -0700
@@ -11,7 +11,7 @@ obj-y			:= bootmem.o filemap.o mempool.o
 			   page_alloc.o page-writeback.o pdflush.o \
 			   readahead.o swap.o truncate.o vmscan.o \
 			   prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \
-			   $(mmu-y)
+			   slub.o $(mmu-y)
 
 obj-$(CONFIG_BOUNCE)	+= bounce.o
 obj-$(CONFIG_SWAP)	+= page_io.o swap_state.o swapfile.o thrash.o
@@ -22,8 +22,6 @@ obj-$(CONFIG_SPARSEMEM)	+= sparse.o
 obj-$(CONFIG_SHMEM) += shmem.o
 obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o
 obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o
-obj-$(CONFIG_SLAB) += slab.o
-obj-$(CONFIG_SLUB) += slub.o
 obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
 obj-$(CONFIG_FS_XIP) += filemap_xip.o
 obj-$(CONFIG_MIGRATION) += migrate.o
Index: linux-2.6.22-rc6-mm1/mm/slab.c
===================================================================
--- linux-2.6.22-rc6-mm1.orig/mm/slab.c	2007-07-05 23:30:53.000000000 -0700
+++ /dev/null	1970-01-01 00:00:00.000000000 +0000
@@ -1,4448 +0,0 @@
-/*
- * linux/mm/slab.c
- * Written by Mark Hemment, 1996/97.
- * ([email protected])
- *
- * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
- *
- * Major cleanup, different bufctl logic, per-cpu arrays
- *	(c) 2000 Manfred Spraul
- *
- * Cleanup, make the head arrays unconditional, preparation for NUMA
- * 	(c) 2002 Manfred Spraul
- *
- * An implementation of the Slab Allocator as described in outline in;
- *	UNIX Internals: The New Frontiers by Uresh Vahalia
- *	Pub: Prentice Hall	ISBN 0-13-101908-2
- * or with a little more detail in;
- *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
- *	Jeff Bonwick (Sun Microsystems).
- *	Presented at: USENIX Summer 1994 Technical Conference
- *
- * The memory is organized in caches, one cache for each object type.
- * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
- * Each cache consists out of many slabs (they are small (usually one
- * page long) and always contiguous), and each slab contains multiple
- * initialized objects.
- *
- * This means, that your constructor is used only for newly allocated
- * slabs and you must pass objects with the same intializations to
- * kmem_cache_free.
- *
- * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
- * normal). If you need a special memory type, then must create a new
- * cache for that memory type.
- *
- * In order to reduce fragmentation, the slabs are sorted in 3 groups:
- *   full slabs with 0 free objects
- *   partial slabs
- *   empty slabs with no allocated objects
- *
- * If partial slabs exist, then new allocations come from these slabs,
- * otherwise from empty slabs or new slabs are allocated.
- *
- * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
- * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
- *
- * Each cache has a short per-cpu head array, most allocs
- * and frees go into that array, and if that array overflows, then 1/2
- * of the entries in the array are given back into the global cache.
- * The head array is strictly LIFO and should improve the cache hit rates.
- * On SMP, it additionally reduces the spinlock operations.
- *
- * The c_cpuarray may not be read with enabled local interrupts -
- * it's changed with a smp_call_function().
- *
- * SMP synchronization:
- *  constructors and destructors are called without any locking.
- *  Several members in struct kmem_cache and struct slab never change, they
- *	are accessed without any locking.
- *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
- *  	and local interrupts are disabled so slab code is preempt-safe.
- *  The non-constant members are protected with a per-cache irq spinlock.
- *
- * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
- * in 2000 - many ideas in the current implementation are derived from
- * his patch.
- *
- * Further notes from the original documentation:
- *
- * 11 April '97.  Started multi-threading - markhe
- *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
- *	The sem is only needed when accessing/extending the cache-chain, which
- *	can never happen inside an interrupt (kmem_cache_create(),
- *	kmem_cache_shrink() and kmem_cache_reap()).
- *
- *	At present, each engine can be growing a cache.  This should be blocked.
- *
- * 15 March 2005. NUMA slab allocator.
- *	Shai Fultheim <[email protected]>.
- *	Shobhit Dayal <[email protected]>
- *	Alok N Kataria <[email protected]>
- *	Christoph Lameter <[email protected]>
- *
- *	Modified the slab allocator to be node aware on NUMA systems.
- *	Each node has its own list of partial, free and full slabs.
- *	All object allocations for a node occur from node specific slab lists.
- */
-
-#include	<linux/slab.h>
-#include	<linux/mm.h>
-#include	<linux/poison.h>
-#include	<linux/swap.h>
-#include	<linux/cache.h>
-#include	<linux/interrupt.h>
-#include	<linux/init.h>
-#include	<linux/compiler.h>
-#include	<linux/cpuset.h>
-#include	<linux/seq_file.h>
-#include	<linux/notifier.h>
-#include	<linux/kallsyms.h>
-#include	<linux/cpu.h>
-#include	<linux/sysctl.h>
-#include	<linux/module.h>
-#include	<linux/rcupdate.h>
-#include	<linux/string.h>
-#include	<linux/uaccess.h>
-#include	<linux/nodemask.h>
-#include	<linux/mempolicy.h>
-#include	<linux/mutex.h>
-#include	<linux/fault-inject.h>
-#include	<linux/rtmutex.h>
-#include	<linux/reciprocal_div.h>
-
-#include	<asm/cacheflush.h>
-#include	<asm/tlbflush.h>
-#include	<asm/page.h>
-
-/*
- * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
- *		  0 for faster, smaller code (especially in the critical paths).
- *
- * STATS	- 1 to collect stats for /proc/slabinfo.
- *		  0 for faster, smaller code (especially in the critical paths).
- *
- * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
- */
-
-#ifdef CONFIG_DEBUG_SLAB
-#define	DEBUG		1
-#define	STATS		1
-#define	FORCED_DEBUG	1
-#else
-#define	DEBUG		0
-#define	STATS		0
-#define	FORCED_DEBUG	0
-#endif
-
-/* Shouldn't this be in a header file somewhere? */
-#define	BYTES_PER_WORD		sizeof(void *)
-
-#ifndef cache_line_size
-#define cache_line_size()	L1_CACHE_BYTES
-#endif
-
-#ifndef ARCH_KMALLOC_MINALIGN
-/*
- * Enforce a minimum alignment for the kmalloc caches.
- * Usually, the kmalloc caches are cache_line_size() aligned, except when
- * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
- * Some archs want to perform DMA into kmalloc caches and need a guaranteed
- * alignment larger than the alignment of a 64-bit integer.
- * ARCH_KMALLOC_MINALIGN allows that.
- * Note that increasing this value may disable some debug features.
- */
-#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
-#endif
-
-#ifndef ARCH_SLAB_MINALIGN
-/*
- * Enforce a minimum alignment for all caches.
- * Intended for archs that get misalignment faults even for BYTES_PER_WORD
- * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
- * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
- * some debug features.
- */
-#define ARCH_SLAB_MINALIGN 0
-#endif
-
-#ifndef ARCH_KMALLOC_FLAGS
-#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
-#endif
-
-/* Legal flag mask for kmem_cache_create(). */
-#if DEBUG
-# define CREATE_MASK	(SLAB_RED_ZONE | \
-			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
-			 SLAB_CACHE_DMA | \
-			 SLAB_STORE_USER | \
-			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
-			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
-#else
-# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
-			 SLAB_CACHE_DMA | \
-			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
-			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
-#endif
-
-/*
- * kmem_bufctl_t:
- *
- * Bufctl's are used for linking objs within a slab
- * linked offsets.
- *
- * This implementation relies on "struct page" for locating the cache &
- * slab an object belongs to.
- * This allows the bufctl structure to be small (one int), but limits
- * the number of objects a slab (not a cache) can contain when off-slab
- * bufctls are used. The limit is the size of the largest general cache
- * that does not use off-slab slabs.
- * For 32bit archs with 4 kB pages, is this 56.
- * This is not serious, as it is only for large objects, when it is unwise
- * to have too many per slab.
- * Note: This limit can be raised by introducing a general cache whose size
- * is less than 512 (PAGE_SIZE<<3), but greater than 256.
- */
-
-typedef unsigned int kmem_bufctl_t;
-#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
-#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
-#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
-#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
-
-/*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
-struct slab {
-	struct list_head list;
-	unsigned long colouroff;
-	void *s_mem;		/* including colour offset */
-	unsigned int inuse;	/* num of objs active in slab */
-	kmem_bufctl_t free;
-	unsigned short nodeid;
-};
-
-/*
- * struct slab_rcu
- *
- * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
- * arrange for kmem_freepages to be called via RCU.  This is useful if
- * we need to approach a kernel structure obliquely, from its address
- * obtained without the usual locking.  We can lock the structure to
- * stabilize it and check it's still at the given address, only if we
- * can be sure that the memory has not been meanwhile reused for some
- * other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- *
- * We assume struct slab_rcu can overlay struct slab when destroying.
- */
-struct slab_rcu {
-	struct rcu_head head;
-	struct kmem_cache *cachep;
-	void *addr;
-};
-
-/*
- * struct array_cache
- *
- * Purpose:
- * - LIFO ordering, to hand out cache-warm objects from _alloc
- * - reduce the number of linked list operations
- * - reduce spinlock operations
- *
- * The limit is stored in the per-cpu structure to reduce the data cache
- * footprint.
- *
- */
-struct array_cache {
-	unsigned int avail;
-	unsigned int limit;
-	unsigned int batchcount;
-	unsigned int touched;
-	spinlock_t lock;
-	void *entry[0];	/*
-			 * Must have this definition in here for the proper
-			 * alignment of array_cache. Also simplifies accessing
-			 * the entries.
-			 * [0] is for gcc 2.95. It should really be [].
-			 */
-};
-
-/*
- * bootstrap: The caches do not work without cpuarrays anymore, but the
- * cpuarrays are allocated from the generic caches...
- */
-#define BOOT_CPUCACHE_ENTRIES	1
-struct arraycache_init {
-	struct array_cache cache;
-	void *entries[BOOT_CPUCACHE_ENTRIES];
-};
-
-/*
- * The slab lists for all objects.
- */
-struct kmem_list3 {
-	struct list_head slabs_partial;	/* partial list first, better asm code */
-	struct list_head slabs_full;
-	struct list_head slabs_free;
-	unsigned long free_objects;
-	unsigned int free_limit;
-	unsigned int colour_next;	/* Per-node cache coloring */
-	spinlock_t list_lock;
-	struct array_cache *shared;	/* shared per node */
-	struct array_cache **alien;	/* on other nodes */
-	unsigned long next_reap;	/* updated without locking */
-	int free_touched;		/* updated without locking */
-};
-
-/*
- * Need this for bootstrapping a per node allocator.
- */
-#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
-struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
-#define	CACHE_CACHE 0
-#define	SIZE_AC 1
-#define	SIZE_L3 (1 + MAX_NUMNODES)
-
-static int drain_freelist(struct kmem_cache *cache,
-			struct kmem_list3 *l3, int tofree);
-static void free_block(struct kmem_cache *cachep, void **objpp, int len,
-			int node);
-static int enable_cpucache(struct kmem_cache *cachep);
-static void cache_reap(struct work_struct *unused);
-
-/*
- * This function must be completely optimized away if a constant is passed to
- * it.  Mostly the same as what is in linux/slab.h except it returns an index.
- */
-static __always_inline int index_of(const size_t size)
-{
-	extern void __bad_size(void);
-
-	if (__builtin_constant_p(size)) {
-		int i = 0;
-
-#define CACHE(x) \
-	if (size <=x) \
-		return i; \
-	else \
-		i++;
-#include "linux/kmalloc_sizes.h"
-#undef CACHE
-		__bad_size();
-	} else
-		__bad_size();
-	return 0;
-}
-
-static int slab_early_init = 1;
-
-#define INDEX_AC index_of(sizeof(struct arraycache_init))
-#define INDEX_L3 index_of(sizeof(struct kmem_list3))
-
-static void kmem_list3_init(struct kmem_list3 *parent)
-{
-	INIT_LIST_HEAD(&parent->slabs_full);
-	INIT_LIST_HEAD(&parent->slabs_partial);
-	INIT_LIST_HEAD(&parent->slabs_free);
-	parent->shared = NULL;
-	parent->alien = NULL;
-	parent->colour_next = 0;
-	spin_lock_init(&parent->list_lock);
-	parent->free_objects = 0;
-	parent->free_touched = 0;
-}
-
-#define MAKE_LIST(cachep, listp, slab, nodeid)				\
-	do {								\
-		INIT_LIST_HEAD(listp);					\
-		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
-	} while (0)
-
-#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
-	do {								\
-	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
-	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
-	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
-	} while (0)
-
-/*
- * struct kmem_cache
- *
- * manages a cache.
- */
-
-struct kmem_cache {
-/* 1) per-cpu data, touched during every alloc/free */
-	struct array_cache *array[NR_CPUS];
-/* 2) Cache tunables. Protected by cache_chain_mutex */
-	unsigned int batchcount;
-	unsigned int limit;
-	unsigned int shared;
-
-	unsigned int buffer_size;
-	u32 reciprocal_buffer_size;
-/* 3) touched by every alloc & free from the backend */
-
-	unsigned int flags;		/* constant flags */
-	unsigned int num;		/* # of objs per slab */
-
-/* 4) cache_grow/shrink */
-	/* order of pgs per slab (2^n) */
-	unsigned int gfporder;
-
-	/* force GFP flags, e.g. GFP_DMA */
-	gfp_t gfpflags;
-
-	size_t colour;			/* cache colouring range */
-	unsigned int colour_off;	/* colour offset */
-	struct kmem_cache *slabp_cache;
-	unsigned int slab_size;
-	unsigned int dflags;		/* dynamic flags */
-
-	/* constructor func */
-	void (*ctor) (void *, struct kmem_cache *, unsigned long);
-
-/* 5) cache creation/removal */
-	const char *name;
-	struct list_head next;
-
-/* 6) statistics */
-#if STATS
-	unsigned long num_active;
-	unsigned long num_allocations;
-	unsigned long high_mark;
-	unsigned long grown;
-	unsigned long reaped;
-	unsigned long errors;
-	unsigned long max_freeable;
-	unsigned long node_allocs;
-	unsigned long node_frees;
-	unsigned long node_overflow;
-	atomic_t allochit;
-	atomic_t allocmiss;
-	atomic_t freehit;
-	atomic_t freemiss;
-#endif
-#if DEBUG
-	/*
-	 * If debugging is enabled, then the allocator can add additional
-	 * fields and/or padding to every object. buffer_size contains the total
-	 * object size including these internal fields, the following two
-	 * variables contain the offset to the user object and its size.
-	 */
-	int obj_offset;
-	int obj_size;
-#endif
-	/*
-	 * We put nodelists[] at the end of kmem_cache, because we want to size
-	 * this array to nr_node_ids slots instead of MAX_NUMNODES
-	 * (see kmem_cache_init())
-	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
-	 * is statically defined, so we reserve the max number of nodes.
-	 */
-	struct kmem_list3 *nodelists[MAX_NUMNODES];
-	/*
-	 * Do not add fields after nodelists[]
-	 */
-};
-
-#define CFLGS_OFF_SLAB		(0x80000000UL)
-#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
-
-#define BATCHREFILL_LIMIT	16
-/*
- * Optimization question: fewer reaps means less probability for unnessary
- * cpucache drain/refill cycles.
- *
- * OTOH the cpuarrays can contain lots of objects,
- * which could lock up otherwise freeable slabs.
- */
-#define REAPTIMEOUT_CPUC	(2*HZ)
-#define REAPTIMEOUT_LIST3	(4*HZ)
-
-#if STATS
-#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
-#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
-#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
-#define	STATS_INC_GROWN(x)	((x)->grown++)
-#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
-#define	STATS_SET_HIGH(x)						\
-	do {								\
-		if ((x)->num_active > (x)->high_mark)			\
-			(x)->high_mark = (x)->num_active;		\
-	} while (0)
-#define	STATS_INC_ERR(x)	((x)->errors++)
-#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
-#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
-#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
-#define	STATS_SET_FREEABLE(x, i)					\
-	do {								\
-		if ((x)->max_freeable < i)				\
-			(x)->max_freeable = i;				\
-	} while (0)
-#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
-#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
-#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
-#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
-#else
-#define	STATS_INC_ACTIVE(x)	do { } while (0)
-#define	STATS_DEC_ACTIVE(x)	do { } while (0)
-#define	STATS_INC_ALLOCED(x)	do { } while (0)
-#define	STATS_INC_GROWN(x)	do { } while (0)
-#define	STATS_ADD_REAPED(x,y)	do { } while (0)
-#define	STATS_SET_HIGH(x)	do { } while (0)
-#define	STATS_INC_ERR(x)	do { } while (0)
-#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
-#define	STATS_INC_NODEFREES(x)	do { } while (0)
-#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
-#define	STATS_SET_FREEABLE(x, i) do { } while (0)
-#define STATS_INC_ALLOCHIT(x)	do { } while (0)
-#define STATS_INC_ALLOCMISS(x)	do { } while (0)
-#define STATS_INC_FREEHIT(x)	do { } while (0)
-#define STATS_INC_FREEMISS(x)	do { } while (0)
-#endif
-
-#if DEBUG
-
-/*
- * memory layout of objects:
- * 0		: objp
- * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
- * 		the end of an object is aligned with the end of the real
- * 		allocation. Catches writes behind the end of the allocation.
- * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
- * 		redzone word.
- * cachep->obj_offset: The real object.
- * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
- *					[BYTES_PER_WORD long]
- */
-static int obj_offset(struct kmem_cache *cachep)
-{
-	return cachep->obj_offset;
-}
-
-static int obj_size(struct kmem_cache *cachep)
-{
-	return cachep->obj_size;
-}
-
-static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
-{
-	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
-	return (unsigned long long*) (objp + obj_offset(cachep) -
-				      sizeof(unsigned long long));
-}
-
-static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
-{
-	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
-	if (cachep->flags & SLAB_STORE_USER)
-		return (unsigned long long *)(objp + cachep->buffer_size -
-					      sizeof(unsigned long long) -
-					      BYTES_PER_WORD);
-	return (unsigned long long *) (objp + cachep->buffer_size -
-				       sizeof(unsigned long long));
-}
-
-static void **dbg_userword(struct kmem_cache *cachep, void *objp)
-{
-	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
-	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
-}
-
-#else
-
-#define obj_offset(x)			0
-#define obj_size(cachep)		(cachep->buffer_size)
-#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
-#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
-#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
-
-#endif
-
-/*
- * Do not go above this order unless 0 objects fit into the slab.
- */
-#define	BREAK_GFP_ORDER_HI	1
-#define	BREAK_GFP_ORDER_LO	0
-static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
-
-/*
- * Functions for storing/retrieving the cachep and or slab from the page
- * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
- * these are used to find the cache which an obj belongs to.
- */
-static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
-{
-	page->lru.next = (struct list_head *)cache;
-}
-
-static inline struct kmem_cache *page_get_cache(struct page *page)
-{
-	page = compound_head(page);
-	BUG_ON(!PageSlab(page));
-	return (struct kmem_cache *)page->lru.next;
-}
-
-static inline void page_set_slab(struct page *page, struct slab *slab)
-{
-	page->lru.prev = (struct list_head *)slab;
-}
-
-static inline struct slab *page_get_slab(struct page *page)
-{
-	BUG_ON(!PageSlab(page));
-	return (struct slab *)page->lru.prev;
-}
-
-static inline struct kmem_cache *virt_to_cache(const void *obj)
-{
-	struct page *page = virt_to_head_page(obj);
-	return page_get_cache(page);
-}
-
-static inline struct slab *virt_to_slab(const void *obj)
-{
-	struct page *page = virt_to_head_page(obj);
-	return page_get_slab(page);
-}
-
-static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
-				 unsigned int idx)
-{
-	return slab->s_mem + cache->buffer_size * idx;
-}
-
-/*
- * We want to avoid an expensive divide : (offset / cache->buffer_size)
- *   Using the fact that buffer_size is a constant for a particular cache,
- *   we can replace (offset / cache->buffer_size) by
- *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
- */
-static inline unsigned int obj_to_index(const struct kmem_cache *cache,
-					const struct slab *slab, void *obj)
-{
-	u32 offset = (obj - slab->s_mem);
-	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
-}
-
-/*
- * These are the default caches for kmalloc. Custom caches can have other sizes.
- */
-struct cache_sizes malloc_sizes[] = {
-#define CACHE(x) { .cs_size = (x) },
-#include <linux/kmalloc_sizes.h>
-	CACHE(ULONG_MAX)
-#undef CACHE
-};
-EXPORT_SYMBOL(malloc_sizes);
-
-/* Must match cache_sizes above. Out of line to keep cache footprint low. */
-struct cache_names {
-	char *name;
-	char *name_dma;
-};
-
-static struct cache_names __initdata cache_names[] = {
-#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
-#include <linux/kmalloc_sizes.h>
-	{NULL,}
-#undef CACHE
-};
-
-static struct arraycache_init initarray_cache __initdata =
-    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
-static struct arraycache_init initarray_generic =
-    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
-
-/* internal cache of cache description objs */
-static struct kmem_cache cache_cache = {
-	.batchcount = 1,
-	.limit = BOOT_CPUCACHE_ENTRIES,
-	.shared = 1,
-	.buffer_size = sizeof(struct kmem_cache),
-	.name = "kmem_cache",
-};
-
-#define BAD_ALIEN_MAGIC 0x01020304ul
-
-#ifdef CONFIG_LOCKDEP
-
-/*
- * Slab sometimes uses the kmalloc slabs to store the slab headers
- * for other slabs "off slab".
- * The locking for this is tricky in that it nests within the locks
- * of all other slabs in a few places; to deal with this special
- * locking we put on-slab caches into a separate lock-class.
- *
- * We set lock class for alien array caches which are up during init.
- * The lock annotation will be lost if all cpus of a node goes down and
- * then comes back up during hotplug
- */
-static struct lock_class_key on_slab_l3_key;
-static struct lock_class_key on_slab_alc_key;
-
-static inline void init_lock_keys(void)
-
-{
-	int q;
-	struct cache_sizes *s = malloc_sizes;
-
-	while (s->cs_size != ULONG_MAX) {
-		for_each_node(q) {
-			struct array_cache **alc;
-			int r;
-			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
-			if (!l3 || OFF_SLAB(s->cs_cachep))
-				continue;
-			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
-			alc = l3->alien;
-			/*
-			 * FIXME: This check for BAD_ALIEN_MAGIC
-			 * should go away when common slab code is taught to
-			 * work even without alien caches.
-			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
-			 * for alloc_alien_cache,
-			 */
-			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
-				continue;
-			for_each_node(r) {
-				if (alc[r])
-					lockdep_set_class(&alc[r]->lock,
-					     &on_slab_alc_key);
-			}
-		}
-		s++;
-	}
-}
-#else
-static inline void init_lock_keys(void)
-{
-}
-#endif
-
-/*
- * 1. Guard access to the cache-chain.
- * 2. Protect sanity of cpu_online_map against cpu hotplug events
- */
-static DEFINE_MUTEX(cache_chain_mutex);
-static struct list_head cache_chain;
-
-/*
- * chicken and egg problem: delay the per-cpu array allocation
- * until the general caches are up.
- */
-static enum {
-	NONE,
-	PARTIAL_AC,
-	PARTIAL_L3,
-	FULL
-} g_cpucache_up;
-
-/*
- * used by boot code to determine if it can use slab based allocator
- */
-int slab_is_available(void)
-{
-	return g_cpucache_up == FULL;
-}
-
-static DEFINE_PER_CPU(struct delayed_work, reap_work);
-
-static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
-{
-	return cachep->array[smp_processor_id()];
-}
-
-static inline struct kmem_cache *__find_general_cachep(size_t size,
-							gfp_t gfpflags)
-{
-	struct cache_sizes *csizep = malloc_sizes;
-
-#if DEBUG
-	/* This happens if someone tries to call
-	 * kmem_cache_create(), or __kmalloc(), before
-	 * the generic caches are initialized.
-	 */
-	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
-#endif
-	if (!size)
-		return ZERO_SIZE_PTR;
-
-	while (size > csizep->cs_size)
-		csizep++;
-
-	/*
-	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
-	 * has cs_{dma,}cachep==NULL. Thus no special case
-	 * for large kmalloc calls required.
-	 */
-#ifdef CONFIG_ZONE_DMA
-	if (unlikely(gfpflags & GFP_DMA))
-		return csizep->cs_dmacachep;
-#endif
-	return csizep->cs_cachep;
-}
-
-static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
-{
-	return __find_general_cachep(size, gfpflags);
-}
-
-static size_t slab_mgmt_size(size_t nr_objs, size_t align)
-{
-	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
-}
-
-/*
- * Calculate the number of objects and left-over bytes for a given buffer size.
- */
-static void cache_estimate(unsigned long gfporder, size_t buffer_size,
-			   size_t align, int flags, size_t *left_over,
-			   unsigned int *num)
-{
-	int nr_objs;
-	size_t mgmt_size;
-	size_t slab_size = PAGE_SIZE << gfporder;
-
-	/*
-	 * The slab management structure can be either off the slab or
-	 * on it. For the latter case, the memory allocated for a
-	 * slab is used for:
-	 *
-	 * - The struct slab
-	 * - One kmem_bufctl_t for each object
-	 * - Padding to respect alignment of @align
-	 * - @buffer_size bytes for each object
-	 *
-	 * If the slab management structure is off the slab, then the
-	 * alignment will already be calculated into the size. Because
-	 * the slabs are all pages aligned, the objects will be at the
-	 * correct alignment when allocated.
-	 */
-	if (flags & CFLGS_OFF_SLAB) {
-		mgmt_size = 0;
-		nr_objs = slab_size / buffer_size;
-
-		if (nr_objs > SLAB_LIMIT)
-			nr_objs = SLAB_LIMIT;
-	} else {
-		/*
-		 * Ignore padding for the initial guess. The padding
-		 * is at most @align-1 bytes, and @buffer_size is at
-		 * least @align. In the worst case, this result will
-		 * be one greater than the number of objects that fit
-		 * into the memory allocation when taking the padding
-		 * into account.
-		 */
-		nr_objs = (slab_size - sizeof(struct slab)) /
-			  (buffer_size + sizeof(kmem_bufctl_t));
-
-		/*
-		 * This calculated number will be either the right
-		 * amount, or one greater than what we want.
-		 */
-		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
-		       > slab_size)
-			nr_objs--;
-
-		if (nr_objs > SLAB_LIMIT)
-			nr_objs = SLAB_LIMIT;
-
-		mgmt_size = slab_mgmt_size(nr_objs, align);
-	}
-	*num = nr_objs;
-	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
-}
-
-#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
-
-static void __slab_error(const char *function, struct kmem_cache *cachep,
-			char *msg)
-{
-	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
-	       function, cachep->name, msg);
-	dump_stack();
-}
-
-/*
- * By default on NUMA we use alien caches to stage the freeing of
- * objects allocated from other nodes. This causes massive memory
- * inefficiencies when using fake NUMA setup to split memory into a
- * large number of small nodes, so it can be disabled on the command
- * line
-  */
-
-static int use_alien_caches __read_mostly = 1;
-static int __init noaliencache_setup(char *s)
-{
-	use_alien_caches = 0;
-	return 1;
-}
-__setup("noaliencache", noaliencache_setup);
-
-#ifdef CONFIG_NUMA
-/*
- * Special reaping functions for NUMA systems called from cache_reap().
- * These take care of doing round robin flushing of alien caches (containing
- * objects freed on different nodes from which they were allocated) and the
- * flushing of remote pcps by calling drain_node_pages.
- */
-static DEFINE_PER_CPU(unsigned long, reap_node);
-
-static void init_reap_node(int cpu)
-{
-	int node;
-
-	node = next_node(cpu_to_node(cpu), node_online_map);
-	if (node == MAX_NUMNODES)
-		node = first_node(node_online_map);
-
-	per_cpu(reap_node, cpu) = node;
-}
-
-static void next_reap_node(void)
-{
-	int node = __get_cpu_var(reap_node);
-
-	node = next_node(node, node_online_map);
-	if (unlikely(node >= MAX_NUMNODES))
-		node = first_node(node_online_map);
-	__get_cpu_var(reap_node) = node;
-}
-
-#else
-#define init_reap_node(cpu) do { } while (0)
-#define next_reap_node(void) do { } while (0)
-#endif
-
-/*
- * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
- * via the workqueue/eventd.
- * Add the CPU number into the expiration time to minimize the possibility of
- * the CPUs getting into lockstep and contending for the global cache chain
- * lock.
- */
-static void __cpuinit start_cpu_timer(int cpu)
-{
-	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
-
-	/*
-	 * When this gets called from do_initcalls via cpucache_init(),
-	 * init_workqueues() has already run, so keventd will be setup
-	 * at that time.
-	 */
-	if (keventd_up() && reap_work->work.func == NULL) {
-		init_reap_node(cpu);
-		INIT_DELAYED_WORK(reap_work, cache_reap);
-		schedule_delayed_work_on(cpu, reap_work,
-					__round_jiffies_relative(HZ, cpu));
-	}
-}
-
-static struct array_cache *alloc_arraycache(int node, int entries,
-					    int batchcount)
-{
-	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
-	struct array_cache *nc = NULL;
-
-	nc = kmalloc_node(memsize, GFP_KERNEL, node);
-	if (nc) {
-		nc->avail = 0;
-		nc->limit = entries;
-		nc->batchcount = batchcount;
-		nc->touched = 0;
-		spin_lock_init(&nc->lock);
-	}
-	return nc;
-}
-
-/*
- * Transfer objects in one arraycache to another.
- * Locking must be handled by the caller.
- *
- * Return the number of entries transferred.
- */
-static int transfer_objects(struct array_cache *to,
-		struct array_cache *from, unsigned int max)
-{
-	/* Figure out how many entries to transfer */
-	int nr = min(min(from->avail, max), to->limit - to->avail);
-
-	if (!nr)
-		return 0;
-
-	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
-			sizeof(void *) *nr);
-
-	from->avail -= nr;
-	to->avail += nr;
-	to->touched = 1;
-	return nr;
-}
-
-#ifndef CONFIG_NUMA
-
-#define drain_alien_cache(cachep, alien) do { } while (0)
-#define reap_alien(cachep, l3) do { } while (0)
-
-static inline struct array_cache **alloc_alien_cache(int node, int limit)
-{
-	return (struct array_cache **)BAD_ALIEN_MAGIC;
-}
-
-static inline void free_alien_cache(struct array_cache **ac_ptr)
-{
-}
-
-static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
-{
-	return 0;
-}
-
-static inline void *alternate_node_alloc(struct kmem_cache *cachep,
-		gfp_t flags)
-{
-	return NULL;
-}
-
-static inline void *____cache_alloc_node(struct kmem_cache *cachep,
-		 gfp_t flags, int nodeid)
-{
-	return NULL;
-}
-
-#else	/* CONFIG_NUMA */
-
-static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
-static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
-
-static struct array_cache **alloc_alien_cache(int node, int limit)
-{
-	struct array_cache **ac_ptr;
-	int memsize = sizeof(void *) * nr_node_ids;
-	int i;
-
-	if (limit > 1)
-		limit = 12;
-	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
-	if (ac_ptr) {
-		for_each_node(i) {
-			if (i == node || !node_online(i)) {
-				ac_ptr[i] = NULL;
-				continue;
-			}
-			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
-			if (!ac_ptr[i]) {
-				for (i--; i <= 0; i--)
-					kfree(ac_ptr[i]);
-				kfree(ac_ptr);
-				return NULL;
-			}
-		}
-	}
-	return ac_ptr;
-}
-
-static void free_alien_cache(struct array_cache **ac_ptr)
-{
-	int i;
-
-	if (!ac_ptr)
-		return;
-	for_each_node(i)
-	    kfree(ac_ptr[i]);
-	kfree(ac_ptr);
-}
-
-static void __drain_alien_cache(struct kmem_cache *cachep,
-				struct array_cache *ac, int node)
-{
-	struct kmem_list3 *rl3 = cachep->nodelists[node];
-
-	if (ac->avail) {
-		spin_lock(&rl3->list_lock);
-		/*
-		 * Stuff objects into the remote nodes shared array first.
-		 * That way we could avoid the overhead of putting the objects
-		 * into the free lists and getting them back later.
-		 */
-		if (rl3->shared)
-			transfer_objects(rl3->shared, ac, ac->limit);
-
-		free_block(cachep, ac->entry, ac->avail, node);
-		ac->avail = 0;
-		spin_unlock(&rl3->list_lock);
-	}
-}
-
-/*
- * Called from cache_reap() to regularly drain alien caches round robin.
- */
-static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
-{
-	int node = __get_cpu_var(reap_node);
-
-	if (l3->alien) {
-		struct array_cache *ac = l3->alien[node];
-
-		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
-			__drain_alien_cache(cachep, ac, node);
-			spin_unlock_irq(&ac->lock);
-		}
-	}
-}
-
-static void drain_alien_cache(struct kmem_cache *cachep,
-				struct array_cache **alien)
-{
-	int i = 0;
-	struct array_cache *ac;
-	unsigned long flags;
-
-	for_each_online_node(i) {
-		ac = alien[i];
-		if (ac) {
-			spin_lock_irqsave(&ac->lock, flags);
-			__drain_alien_cache(cachep, ac, i);
-			spin_unlock_irqrestore(&ac->lock, flags);
-		}
-	}
-}
-
-static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
-{
-	struct slab *slabp = virt_to_slab(objp);
-	int nodeid = slabp->nodeid;
-	struct kmem_list3 *l3;
-	struct array_cache *alien = NULL;
-	int node;
-
-	node = numa_node_id();
-
-	/*
-	 * Make sure we are not freeing a object from another node to the array
-	 * cache on this cpu.
-	 */
-	if (likely(slabp->nodeid == node))
-		return 0;
-
-	l3 = cachep->nodelists[node];
-	STATS_INC_NODEFREES(cachep);
-	if (l3->alien && l3->alien[nodeid]) {
-		alien = l3->alien[nodeid];
-		spin_lock(&alien->lock);
-		if (unlikely(alien->avail == alien->limit)) {
-			STATS_INC_ACOVERFLOW(cachep);
-			__drain_alien_cache(cachep, alien, nodeid);
-		}
-		alien->entry[alien->avail++] = objp;
-		spin_unlock(&alien->lock);
-	} else {
-		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
-		free_block(cachep, &objp, 1, nodeid);
-		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
-	}
-	return 1;
-}
-#endif
-
-static int __cpuinit cpuup_callback(struct notifier_block *nfb,
-				    unsigned long action, void *hcpu)
-{
-	long cpu = (long)hcpu;
-	struct kmem_cache *cachep;
-	struct kmem_list3 *l3 = NULL;
-	int node = cpu_to_node(cpu);
-	int memsize = sizeof(struct kmem_list3);
-
-	switch (action) {
-	case CPU_LOCK_ACQUIRE:
-		mutex_lock(&cache_chain_mutex);
-		break;
-	case CPU_UP_PREPARE:
-	case CPU_UP_PREPARE_FROZEN:
-		/*
-		 * We need to do this right in the beginning since
-		 * alloc_arraycache's are going to use this list.
-		 * kmalloc_node allows us to add the slab to the right
-		 * kmem_list3 and not this cpu's kmem_list3
-		 */
-
-		list_for_each_entry(cachep, &cache_chain, next) {
-			/*
-			 * Set up the size64 kmemlist for cpu before we can
-			 * begin anything. Make sure some other cpu on this
-			 * node has not already allocated this
-			 */
-			if (!cachep->nodelists[node]) {
-				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
-				if (!l3)
-					goto bad;
-				kmem_list3_init(l3);
-				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
-				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-
-				/*
-				 * The l3s don't come and go as CPUs come and
-				 * go.  cache_chain_mutex is sufficient
-				 * protection here.
-				 */
-				cachep->nodelists[node] = l3;
-			}
-
-			spin_lock_irq(&cachep->nodelists[node]->list_lock);
-			cachep->nodelists[node]->free_limit =
-				(1 + nr_cpus_node(node)) *
-				cachep->batchcount + cachep->num;
-			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
-		}
-
-		/*
-		 * Now we can go ahead with allocating the shared arrays and
-		 * array caches
-		 */
-		list_for_each_entry(cachep, &cache_chain, next) {
-			struct array_cache *nc;
-			struct array_cache *shared = NULL;
-			struct array_cache **alien = NULL;
-
-			nc = alloc_arraycache(node, cachep->limit,
-						cachep->batchcount);
-			if (!nc)
-				goto bad;
-			if (cachep->shared) {
-				shared = alloc_arraycache(node,
-					cachep->shared * cachep->batchcount,
-					0xbaadf00d);
-				if (!shared)
-					goto bad;
-			}
-			if (use_alien_caches) {
-                                alien = alloc_alien_cache(node, cachep->limit);
-                                if (!alien)
-                                        goto bad;
-                        }
-			cachep->array[cpu] = nc;
-			l3 = cachep->nodelists[node];
-			BUG_ON(!l3);
-
-			spin_lock_irq(&l3->list_lock);
-			if (!l3->shared) {
-				/*
-				 * We are serialised from CPU_DEAD or
-				 * CPU_UP_CANCELLED by the cpucontrol lock
-				 */
-				l3->shared = shared;
-				shared = NULL;
-			}
-#ifdef CONFIG_NUMA
-			if (!l3->alien) {
-				l3->alien = alien;
-				alien = NULL;
-			}
-#endif
-			spin_unlock_irq(&l3->list_lock);
-			kfree(shared);
-			free_alien_cache(alien);
-		}
-		break;
-	case CPU_ONLINE:
-	case CPU_ONLINE_FROZEN:
-		start_cpu_timer(cpu);
-		break;
-#ifdef CONFIG_HOTPLUG_CPU
-  	case CPU_DOWN_PREPARE:
-  	case CPU_DOWN_PREPARE_FROZEN:
-		/*
-		 * Shutdown cache reaper. Note that the cache_chain_mutex is
-		 * held so that if cache_reap() is invoked it cannot do
-		 * anything expensive but will only modify reap_work
-		 * and reschedule the timer.
-		*/
-		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
-		/* Now the cache_reaper is guaranteed to be not running. */
-		per_cpu(reap_work, cpu).work.func = NULL;
-  		break;
-  	case CPU_DOWN_FAILED:
-  	case CPU_DOWN_FAILED_FROZEN:
-		start_cpu_timer(cpu);
-  		break;
-	case CPU_DEAD:
-	case CPU_DEAD_FROZEN:
-		/*
-		 * Even if all the cpus of a node are down, we don't free the
-		 * kmem_list3 of any cache. This to avoid a race between
-		 * cpu_down, and a kmalloc allocation from another cpu for
-		 * memory from the node of the cpu going down.  The list3
-		 * structure is usually allocated from kmem_cache_create() and
-		 * gets destroyed at kmem_cache_destroy().
-		 */
-		/* fall thru */
-#endif
-	case CPU_UP_CANCELED:
-	case CPU_UP_CANCELED_FROZEN:
-		list_for_each_entry(cachep, &cache_chain, next) {
-			struct array_cache *nc;
-			struct array_cache *shared;
-			struct array_cache **alien;
-			cpumask_t mask;
-
-			mask = node_to_cpumask(node);
-			/* cpu is dead; no one can alloc from it. */
-			nc = cachep->array[cpu];
-			cachep->array[cpu] = NULL;
-			l3 = cachep->nodelists[node];
-
-			if (!l3)
-				goto free_array_cache;
-
-			spin_lock_irq(&l3->list_lock);
-
-			/* Free limit for this kmem_list3 */
-			l3->free_limit -= cachep->batchcount;
-			if (nc)
-				free_block(cachep, nc->entry, nc->avail, node);
-
-			if (!cpus_empty(mask)) {
-				spin_unlock_irq(&l3->list_lock);
-				goto free_array_cache;
-			}
-
-			shared = l3->shared;
-			if (shared) {
-				free_block(cachep, shared->entry,
-					   shared->avail, node);
-				l3->shared = NULL;
-			}
-
-			alien = l3->alien;
-			l3->alien = NULL;
-
-			spin_unlock_irq(&l3->list_lock);
-
-			kfree(shared);
-			if (alien) {
-				drain_alien_cache(cachep, alien);
-				free_alien_cache(alien);
-			}
-free_array_cache:
-			kfree(nc);
-		}
-		/*
-		 * In the previous loop, all the objects were freed to
-		 * the respective cache's slabs,  now we can go ahead and
-		 * shrink each nodelist to its limit.
-		 */
-		list_for_each_entry(cachep, &cache_chain, next) {
-			l3 = cachep->nodelists[node];
-			if (!l3)
-				continue;
-			drain_freelist(cachep, l3, l3->free_objects);
-		}
-		break;
-	case CPU_LOCK_RELEASE:
-		mutex_unlock(&cache_chain_mutex);
-		break;
-	}
-	return NOTIFY_OK;
-bad:
-	return NOTIFY_BAD;
-}
-
-static struct notifier_block __cpuinitdata cpucache_notifier = {
-	&cpuup_callback, NULL, 0
-};
-
-/*
- * swap the static kmem_list3 with kmalloced memory
- */
-static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
-			int nodeid)
-{
-	struct kmem_list3 *ptr;
-
-	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
-	BUG_ON(!ptr);
-
-	local_irq_disable();
-	memcpy(ptr, list, sizeof(struct kmem_list3));
-	/*
-	 * Do not assume that spinlocks can be initialized via memcpy:
-	 */
-	spin_lock_init(&ptr->list_lock);
-
-	MAKE_ALL_LISTS(cachep, ptr, nodeid);
-	cachep->nodelists[nodeid] = ptr;
-	local_irq_enable();
-}
-
-/*
- * Initialisation.  Called after the page allocator have been initialised and
- * before smp_init().
- */
-void __init kmem_cache_init(void)
-{
-	size_t left_over;
-	struct cache_sizes *sizes;
-	struct cache_names *names;
-	int i;
-	int order;
-	int node;
-
-	if (num_possible_nodes() == 1)
-		use_alien_caches = 0;
-
-	for (i = 0; i < NUM_INIT_LISTS; i++) {
-		kmem_list3_init(&initkmem_list3[i]);
-		if (i < MAX_NUMNODES)
-			cache_cache.nodelists[i] = NULL;
-	}
-
-	/*
-	 * Fragmentation resistance on low memory - only use bigger
-	 * page orders on machines with more than 32MB of memory.
-	 */
-	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
-		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
-
-	/* Bootstrap is tricky, because several objects are allocated
-	 * from caches that do not exist yet:
-	 * 1) initialize the cache_cache cache: it contains the struct
-	 *    kmem_cache structures of all caches, except cache_cache itself:
-	 *    cache_cache is statically allocated.
-	 *    Initially an __init data area is used for the head array and the
-	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
-	 *    array at the end of the bootstrap.
-	 * 2) Create the first kmalloc cache.
-	 *    The struct kmem_cache for the new cache is allocated normally.
-	 *    An __init data area is used for the head array.
-	 * 3) Create the remaining kmalloc caches, with minimally sized
-	 *    head arrays.
-	 * 4) Replace the __init data head arrays for cache_cache and the first
-	 *    kmalloc cache with kmalloc allocated arrays.
-	 * 5) Replace the __init data for kmem_list3 for cache_cache and
-	 *    the other cache's with kmalloc allocated memory.
-	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
-	 */
-
-	node = numa_node_id();
-
-	/* 1) create the cache_cache */
-	INIT_LIST_HEAD(&cache_chain);
-	list_add(&cache_cache.next, &cache_chain);
-	cache_cache.colour_off = cache_line_size();
-	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
-	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
-
-	/*
-	 * struct kmem_cache size depends on nr_node_ids, which
-	 * can be less than MAX_NUMNODES.
-	 */
-	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
-				 nr_node_ids * sizeof(struct kmem_list3 *);
-#if DEBUG
-	cache_cache.obj_size = cache_cache.buffer_size;
-#endif
-	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
-					cache_line_size());
-	cache_cache.reciprocal_buffer_size =
-		reciprocal_value(cache_cache.buffer_size);
-
-	for (order = 0; order < MAX_ORDER; order++) {
-		cache_estimate(order, cache_cache.buffer_size,
-			cache_line_size(), 0, &left_over, &cache_cache.num);
-		if (cache_cache.num)
-			break;
-	}
-	BUG_ON(!cache_cache.num);
-	cache_cache.gfporder = order;
-	cache_cache.colour = left_over / cache_cache.colour_off;
-	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
-				      sizeof(struct slab), cache_line_size());
-
-	/* 2+3) create the kmalloc caches */
-	sizes = malloc_sizes;
-	names = cache_names;
-
-	/*
-	 * Initialize the caches that provide memory for the array cache and the
-	 * kmem_list3 structures first.  Without this, further allocations will
-	 * bug.
-	 */
-
-	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
-					sizes[INDEX_AC].cs_size,
-					ARCH_KMALLOC_MINALIGN,
-					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
-					NULL, NULL);
-
-	if (INDEX_AC != INDEX_L3) {
-		sizes[INDEX_L3].cs_cachep =
-			kmem_cache_create(names[INDEX_L3].name,
-				sizes[INDEX_L3].cs_size,
-				ARCH_KMALLOC_MINALIGN,
-				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
-				NULL, NULL);
-	}
-
-	slab_early_init = 0;
-
-	while (sizes->cs_size != ULONG_MAX) {
-		/*
-		 * For performance, all the general caches are L1 aligned.
-		 * This should be particularly beneficial on SMP boxes, as it
-		 * eliminates "false sharing".
-		 * Note for systems short on memory removing the alignment will
-		 * allow tighter packing of the smaller caches.
-		 */
-		if (!sizes->cs_cachep) {
-			sizes->cs_cachep = kmem_cache_create(names->name,
-					sizes->cs_size,
-					ARCH_KMALLOC_MINALIGN,
-					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
-					NULL, NULL);
-		}
-#ifdef CONFIG_ZONE_DMA
-		sizes->cs_dmacachep = kmem_cache_create(
-					names->name_dma,
-					sizes->cs_size,
-					ARCH_KMALLOC_MINALIGN,
-					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
-						SLAB_PANIC,
-					NULL, NULL);
-#endif
-		sizes++;
-		names++;
-	}
-	/* 4) Replace the bootstrap head arrays */
-	{
-		struct array_cache *ptr;
-
-		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
-
-		local_irq_disable();
-		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
-		memcpy(ptr, cpu_cache_get(&cache_cache),
-		       sizeof(struct arraycache_init));
-		/*
-		 * Do not assume that spinlocks can be initialized via memcpy:
-		 */
-		spin_lock_init(&ptr->lock);
-
-		cache_cache.array[smp_processor_id()] = ptr;
-		local_irq_enable();
-
-		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
-
-		local_irq_disable();
-		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
-		       != &initarray_generic.cache);
-		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
-		       sizeof(struct arraycache_init));
-		/*
-		 * Do not assume that spinlocks can be initialized via memcpy:
-		 */
-		spin_lock_init(&ptr->lock);
-
-		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
-		    ptr;
-		local_irq_enable();
-	}
-	/* 5) Replace the bootstrap kmem_list3's */
-	{
-		int nid;
-
-		/* Replace the static kmem_list3 structures for the boot cpu */
-		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
-
-		for_each_online_node(nid) {
-			init_list(malloc_sizes[INDEX_AC].cs_cachep,
-				  &initkmem_list3[SIZE_AC + nid], nid);
-
-			if (INDEX_AC != INDEX_L3) {
-				init_list(malloc_sizes[INDEX_L3].cs_cachep,
-					  &initkmem_list3[SIZE_L3 + nid], nid);
-			}
-		}
-	}
-
-	/* 6) resize the head arrays to their final sizes */
-	{
-		struct kmem_cache *cachep;
-		mutex_lock(&cache_chain_mutex);
-		list_for_each_entry(cachep, &cache_chain, next)
-			if (enable_cpucache(cachep))
-				BUG();
-		mutex_unlock(&cache_chain_mutex);
-	}
-
-	/* Annotate slab for lockdep -- annotate the malloc caches */
-	init_lock_keys();
-
-
-	/* Done! */
-	g_cpucache_up = FULL;
-
-	/*
-	 * Register a cpu startup notifier callback that initializes
-	 * cpu_cache_get for all new cpus
-	 */
-	register_cpu_notifier(&cpucache_notifier);
-
-	/*
-	 * The reap timers are started later, with a module init call: That part
-	 * of the kernel is not yet operational.
-	 */
-}
-
-static int __init cpucache_init(void)
-{
-	int cpu;
-
-	/*
-	 * Register the timers that return unneeded pages to the page allocator
-	 */
-	for_each_online_cpu(cpu)
-		start_cpu_timer(cpu);
-	return 0;
-}
-__initcall(cpucache_init);
-
-/*
- * Interface to system's page allocator. No need to hold the cache-lock.
- *
- * If we requested dmaable memory, we will get it. Even if we
- * did not request dmaable memory, we might get it, but that
- * would be relatively rare and ignorable.
- */
-static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
-{
-	struct page *page;
-	int nr_pages;
-	int i;
-
-#ifndef CONFIG_MMU
-	/*
-	 * Nommu uses slab's for process anonymous memory allocations, and thus
-	 * requires __GFP_COMP to properly refcount higher order allocations
-	 */
-	flags |= __GFP_COMP;
-#endif
-
-	flags |= cachep->gfpflags;
-	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
-		flags |= __GFP_RECLAIMABLE;
-
-	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
-	if (!page)
-		return NULL;
-
-	nr_pages = (1 << cachep->gfporder);
-	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
-		add_zone_page_state(page_zone(page),
-			NR_SLAB_RECLAIMABLE, nr_pages);
-	else
-		add_zone_page_state(page_zone(page),
-			NR_SLAB_UNRECLAIMABLE, nr_pages);
-	for (i = 0; i < nr_pages; i++)
-		__SetPageSlab(page + i);
-	return page_address(page);
-}
-
-/*
- * Interface to system's page release.
- */
-static void kmem_freepages(struct kmem_cache *cachep, void *addr)
-{
-	unsigned long i = (1 << cachep->gfporder);
-	struct page *page = virt_to_page(addr);
-	const unsigned long nr_freed = i;
-
-	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
-		sub_zone_page_state(page_zone(page),
-				NR_SLAB_RECLAIMABLE, nr_freed);
-	else
-		sub_zone_page_state(page_zone(page),
-				NR_SLAB_UNRECLAIMABLE, nr_freed);
-	while (i--) {
-		BUG_ON(!PageSlab(page));
-		__ClearPageSlab(page);
-		page++;
-	}
-	if (current->reclaim_state)
-		current->reclaim_state->reclaimed_slab += nr_freed;
-	free_pages((unsigned long)addr, cachep->gfporder);
-}
-
-static void kmem_rcu_free(struct rcu_head *head)
-{
-	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
-	struct kmem_cache *cachep = slab_rcu->cachep;
-
-	kmem_freepages(cachep, slab_rcu->addr);
-	if (OFF_SLAB(cachep))
-		kmem_cache_free(cachep->slabp_cache, slab_rcu);
-}
-
-#if DEBUG
-
-#ifdef CONFIG_DEBUG_PAGEALLOC
-static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
-			    unsigned long caller)
-{
-	int size = obj_size(cachep);
-
-	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
-
-	if (size < 5 * sizeof(unsigned long))
-		return;
-
-	*addr++ = 0x12345678;
-	*addr++ = caller;
-	*addr++ = smp_processor_id();
-	size -= 3 * sizeof(unsigned long);
-	{
-		unsigned long *sptr = &caller;
-		unsigned long svalue;
-
-		while (!kstack_end(sptr)) {
-			svalue = *sptr++;
-			if (kernel_text_address(svalue)) {
-				*addr++ = svalue;
-				size -= sizeof(unsigned long);
-				if (size <= sizeof(unsigned long))
-					break;
-			}
-		}
-
-	}
-	*addr++ = 0x87654321;
-}
-#endif
-
-static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
-{
-	int size = obj_size(cachep);
-	addr = &((char *)addr)[obj_offset(cachep)];
-
-	memset(addr, val, size);
-	*(unsigned char *)(addr + size - 1) = POISON_END;
-}
-
-static void dump_line(char *data, int offset, int limit)
-{
-	int i;
-	unsigned char error = 0;
-	int bad_count = 0;
-
-	printk(KERN_ERR "%03x:", offset);
-	for (i = 0; i < limit; i++) {
-		if (data[offset + i] != POISON_FREE) {
-			error = data[offset + i];
-			bad_count++;
-		}
-		printk(" %02x", (unsigned char)data[offset + i]);
-	}
-	printk("\n");
-
-	if (bad_count == 1) {
-		error ^= POISON_FREE;
-		if (!(error & (error - 1))) {
-			printk(KERN_ERR "Single bit error detected. Probably "
-					"bad RAM.\n");
-#ifdef CONFIG_X86
-			printk(KERN_ERR "Run memtest86+ or a similar memory "
-					"test tool.\n");
-#else
-			printk(KERN_ERR "Run a memory test tool.\n");
-#endif
-		}
-	}
-}
-#endif
-
-#if DEBUG
-
-static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
-{
-	int i, size;
-	char *realobj;
-
-	if (cachep->flags & SLAB_RED_ZONE) {
-		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
-			*dbg_redzone1(cachep, objp),
-			*dbg_redzone2(cachep, objp));
-	}
-
-	if (cachep->flags & SLAB_STORE_USER) {
-		printk(KERN_ERR "Last user: [<%p>]",
-			*dbg_userword(cachep, objp));
-		print_symbol("(%s)",
-				(unsigned long)*dbg_userword(cachep, objp));
-		printk("\n");
-	}
-	realobj = (char *)objp + obj_offset(cachep);
-	size = obj_size(cachep);
-	for (i = 0; i < size && lines; i += 16, lines--) {
-		int limit;
-		limit = 16;
-		if (i + limit > size)
-			limit = size - i;
-		dump_line(realobj, i, limit);
-	}
-}
-
-static void check_poison_obj(struct kmem_cache *cachep, void *objp)
-{
-	char *realobj;
-	int size, i;
-	int lines = 0;
-
-	realobj = (char *)objp + obj_offset(cachep);
-	size = obj_size(cachep);
-
-	for (i = 0; i < size; i++) {
-		char exp = POISON_FREE;
-		if (i == size - 1)
-			exp = POISON_END;
-		if (realobj[i] != exp) {
-			int limit;
-			/* Mismatch ! */
-			/* Print header */
-			if (lines == 0) {
-				printk(KERN_ERR
-					"Slab corruption: %s start=%p, len=%d\n",
-					cachep->name, realobj, size);
-				print_objinfo(cachep, objp, 0);
-			}
-			/* Hexdump the affected line */
-			i = (i / 16) * 16;
-			limit = 16;
-			if (i + limit > size)
-				limit = size - i;
-			dump_line(realobj, i, limit);
-			i += 16;
-			lines++;
-			/* Limit to 5 lines */
-			if (lines > 5)
-				break;
-		}
-	}
-	if (lines != 0) {
-		/* Print some data about the neighboring objects, if they
-		 * exist:
-		 */
-		struct slab *slabp = virt_to_slab(objp);
-		unsigned int objnr;
-
-		objnr = obj_to_index(cachep, slabp, objp);
-		if (objnr) {
-			objp = index_to_obj(cachep, slabp, objnr - 1);
-			realobj = (char *)objp + obj_offset(cachep);
-			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
-			       realobj, size);
-			print_objinfo(cachep, objp, 2);
-		}
-		if (objnr + 1 < cachep->num) {
-			objp = index_to_obj(cachep, slabp, objnr + 1);
-			realobj = (char *)objp + obj_offset(cachep);
-			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
-			       realobj, size);
-			print_objinfo(cachep, objp, 2);
-		}
-	}
-}
-#endif
-
-#if DEBUG
-/**
- * slab_destroy_objs - destroy a slab and its objects
- * @cachep: cache pointer being destroyed
- * @slabp: slab pointer being destroyed
- *
- * Call the registered destructor for each object in a slab that is being
- * destroyed.
- */
-static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
-{
-	int i;
-	for (i = 0; i < cachep->num; i++) {
-		void *objp = index_to_obj(cachep, slabp, i);
-
-		if (cachep->flags & SLAB_POISON) {
-#ifdef CONFIG_DEBUG_PAGEALLOC
-			if (cachep->buffer_size % PAGE_SIZE == 0 &&
-					OFF_SLAB(cachep))
-				kernel_map_pages(virt_to_page(objp),
-					cachep->buffer_size / PAGE_SIZE, 1);
-			else
-				check_poison_obj(cachep, objp);
-#else
-			check_poison_obj(cachep, objp);
-#endif
-		}
-		if (cachep->flags & SLAB_RED_ZONE) {
-			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
-				slab_error(cachep, "start of a freed object "
-					   "was overwritten");
-			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
-				slab_error(cachep, "end of a freed object "
-					   "was overwritten");
-		}
-	}
-}
-#else
-static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
-{
-}
-#endif
-
-/**
- * slab_destroy - destroy and release all objects in a slab
- * @cachep: cache pointer being destroyed
- * @slabp: slab pointer being destroyed
- *
- * Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache.  The
- * cache-lock is not held/needed.
- */
-static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
-{
-	void *addr = slabp->s_mem - slabp->colouroff;
-
-	slab_destroy_objs(cachep, slabp);
-	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
-		struct slab_rcu *slab_rcu;
-
-		slab_rcu = (struct slab_rcu *)slabp;
-		slab_rcu->cachep = cachep;
-		slab_rcu->addr = addr;
-		call_rcu(&slab_rcu->head, kmem_rcu_free);
-	} else {
-		kmem_freepages(cachep, addr);
-		if (OFF_SLAB(cachep))
-			kmem_cache_free(cachep->slabp_cache, slabp);
-	}
-}
-
-/*
- * For setting up all the kmem_list3s for cache whose buffer_size is same as
- * size of kmem_list3.
- */
-static void __init set_up_list3s(struct kmem_cache *cachep, int index)
-{
-	int node;
-
-	for_each_online_node(node) {
-		cachep->nodelists[node] = &initkmem_list3[index + node];
-		cachep->nodelists[node]->next_reap = jiffies +
-		    REAPTIMEOUT_LIST3 +
-		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-	}
-}
-
-static void __kmem_cache_destroy(struct kmem_cache *cachep)
-{
-	int i;
-	struct kmem_list3 *l3;
-
-	for_each_online_cpu(i)
-	    kfree(cachep->array[i]);
-
-	/* NUMA: free the list3 structures */
-	for_each_online_node(i) {
-		l3 = cachep->nodelists[i];
-		if (l3) {
-			kfree(l3->shared);
-			free_alien_cache(l3->alien);
-			kfree(l3);
-		}
-	}
-	kmem_cache_free(&cache_cache, cachep);
-}
-
-
-/**
- * calculate_slab_order - calculate size (page order) of slabs
- * @cachep: pointer to the cache that is being created
- * @size: size of objects to be created in this cache.
- * @align: required alignment for the objects.
- * @flags: slab allocation flags
- *
- * Also calculates the number of objects per slab.
- *
- * This could be made much more intelligent.  For now, try to avoid using
- * high order pages for slabs.  When the gfp() functions are more friendly
- * towards high-order requests, this should be changed.
- */
-static size_t calculate_slab_order(struct kmem_cache *cachep,
-			size_t size, size_t align, unsigned long flags)
-{
-	unsigned long offslab_limit;
-	size_t left_over = 0;
-	int gfporder;
-
-	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
-		unsigned int num;
-		size_t remainder;
-
-		cache_estimate(gfporder, size, align, flags, &remainder, &num);
-		if (!num)
-			continue;
-
-		if (flags & CFLGS_OFF_SLAB) {
-			/*
-			 * Max number of objs-per-slab for caches which
-			 * use off-slab slabs. Needed to avoid a possible
-			 * looping condition in cache_grow().
-			 */
-			offslab_limit = size - sizeof(struct slab);
-			offslab_limit /= sizeof(kmem_bufctl_t);
-
- 			if (num > offslab_limit)
-				break;
-		}
-
-		/* Found something acceptable - save it away */
-		cachep->num = num;
-		cachep->gfporder = gfporder;
-		left_over = remainder;
-
-		/*
-		 * A VFS-reclaimable slab tends to have most allocations
-		 * as GFP_NOFS and we really don't want to have to be allocating
-		 * higher-order pages when we are unable to shrink dcache.
-		 */
-		if (flags & SLAB_RECLAIM_ACCOUNT)
-			break;
-
-		/*
-		 * Large number of objects is good, but very large slabs are
-		 * currently bad for the gfp()s.
-		 */
-		if (gfporder >= slab_break_gfp_order)
-			break;
-
-		/*
-		 * Acceptable internal fragmentation?
-		 */
-		if (left_over * 8 <= (PAGE_SIZE << gfporder))
-			break;
-	}
-	return left_over;
-}
-
-static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
-{
-	if (g_cpucache_up == FULL)
-		return enable_cpucache(cachep);
-
-	if (g_cpucache_up == NONE) {
-		/*
-		 * Note: the first kmem_cache_create must create the cache
-		 * that's used by kmalloc(24), otherwise the creation of
-		 * further caches will BUG().
-		 */
-		cachep->array[smp_processor_id()] = &initarray_generic.cache;
-
-		/*
-		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
-		 * the first cache, then we need to set up all its list3s,
-		 * otherwise the creation of further caches will BUG().
-		 */
-		set_up_list3s(cachep, SIZE_AC);
-		if (INDEX_AC == INDEX_L3)
-			g_cpucache_up = PARTIAL_L3;
-		else
-			g_cpucache_up = PARTIAL_AC;
-	} else {
-		cachep->array[smp_processor_id()] =
-			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
-
-		if (g_cpucache_up == PARTIAL_AC) {
-			set_up_list3s(cachep, SIZE_L3);
-			g_cpucache_up = PARTIAL_L3;
-		} else {
-			int node;
-			for_each_online_node(node) {
-				cachep->nodelists[node] =
-				    kmalloc_node(sizeof(struct kmem_list3),
-						GFP_KERNEL, node);
-				BUG_ON(!cachep->nodelists[node]);
-				kmem_list3_init(cachep->nodelists[node]);
-			}
-		}
-	}
-	cachep->nodelists[numa_node_id()]->next_reap =
-			jiffies + REAPTIMEOUT_LIST3 +
-			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-
-	cpu_cache_get(cachep)->avail = 0;
-	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
-	cpu_cache_get(cachep)->batchcount = 1;
-	cpu_cache_get(cachep)->touched = 0;
-	cachep->batchcount = 1;
-	cachep->limit = BOOT_CPUCACHE_ENTRIES;
-	return 0;
-}
-
-/**
- * kmem_cache_create - Create a cache.
- * @name: A string which is used in /proc/slabinfo to identify this cache.
- * @size: The size of objects to be created in this cache.
- * @align: The required alignment for the objects.
- * @flags: SLAB flags
- * @ctor: A constructor for the objects.
- * @ops: A kmem_cache_ops structure (ignored).
- *
- * Returns a ptr to the cache on success, NULL on failure.
- * Cannot be called within a int, but can be interrupted.
- * The @ctor is run when new pages are allocated by the cache
- * and the @dtor is run before the pages are handed back.
- *
- * @name must be valid until the cache is destroyed. This implies that
- * the module calling this has to destroy the cache before getting unloaded.
- *
- * The flags are
- *
- * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
- * to catch references to uninitialised memory.
- *
- * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
- * for buffer overruns.
- *
- * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
- * cacheline.  This can be beneficial if you're counting cycles as closely
- * as davem.
- */
-struct kmem_cache *
-kmem_cache_create (const char *name, size_t size, size_t align,
-	unsigned long flags,
-	void (*ctor)(void*, struct kmem_cache *, unsigned long),
-	const struct kmem_cache_ops *ops)
-{
-	size_t left_over, slab_size, ralign;
-	struct kmem_cache *cachep = NULL, *pc;
-
-	/*
-	 * Sanity checks... these are all serious usage bugs.
-	 */
-	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
-	    size > KMALLOC_MAX_SIZE) {
-		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
-				name);
-		BUG();
-	}
-
-	/*
-	 * We use cache_chain_mutex to ensure a consistent view of
-	 * cpu_online_map as well.  Please see cpuup_callback
-	 */
-	mutex_lock(&cache_chain_mutex);
-
-	list_for_each_entry(pc, &cache_chain, next) {
-		char tmp;
-		int res;
-
-		/*
-		 * This happens when the module gets unloaded and doesn't
-		 * destroy its slab cache and no-one else reuses the vmalloc
-		 * area of the module.  Print a warning.
-		 */
-		res = probe_kernel_address(pc->name, tmp);
-		if (res) {
-			printk(KERN_ERR
-			       "SLAB: cache with size %d has lost its name\n",
-			       pc->buffer_size);
-			continue;
-		}
-
-		if (!strcmp(pc->name, name)) {
-			printk(KERN_ERR
-			       "kmem_cache_create: duplicate cache %s\n", name);
-			dump_stack();
-			goto oops;
-		}
-	}
-
-#if DEBUG
-	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
-#if FORCED_DEBUG
-	/*
-	 * Enable redzoning and last user accounting, except for caches with
-	 * large objects, if the increased size would increase the object size
-	 * above the next power of two: caches with object sizes just above a
-	 * power of two have a significant amount of internal fragmentation.
-	 */
-	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
-		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
-	if (!(flags & SLAB_DESTROY_BY_RCU))
-		flags |= SLAB_POISON;
-#endif
-	if (flags & SLAB_DESTROY_BY_RCU)
-		BUG_ON(flags & SLAB_POISON);
-#endif
-	/*
-	 * Always checks flags, a caller might be expecting debug support which
-	 * isn't available.
-	 */
-	BUG_ON(flags & ~CREATE_MASK);
-
-	/*
-	 * Check that size is in terms of words.  This is needed to avoid
-	 * unaligned accesses for some archs when redzoning is used, and makes
-	 * sure any on-slab bufctl's are also correctly aligned.
-	 */
-	if (size & (BYTES_PER_WORD - 1)) {
-		size += (BYTES_PER_WORD - 1);
-		size &= ~(BYTES_PER_WORD - 1);
-	}
-
-	/* calculate the final buffer alignment: */
-
-	/* 1) arch recommendation: can be overridden for debug */
-	if (flags & SLAB_HWCACHE_ALIGN) {
-		/*
-		 * Default alignment: as specified by the arch code.  Except if
-		 * an object is really small, then squeeze multiple objects into
-		 * one cacheline.
-		 */
-		ralign = cache_line_size();
-		while (size <= ralign / 2)
-			ralign /= 2;
-	} else {
-		ralign = BYTES_PER_WORD;
-	}
-
-	/*
-	 * Redzoning and user store require word alignment. Note this will be
-	 * overridden by architecture or caller mandated alignment if either
-	 * is greater than BYTES_PER_WORD.
-	 */
-	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
-		ralign = __alignof__(unsigned long long);
-
-	/* 2) arch mandated alignment */
-	if (ralign < ARCH_SLAB_MINALIGN) {
-		ralign = ARCH_SLAB_MINALIGN;
-	}
-	/* 3) caller mandated alignment */
-	if (ralign < align) {
-		ralign = align;
-	}
-	/* disable debug if necessary */
-	if (ralign > __alignof__(unsigned long long))
-		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
-	/*
-	 * 4) Store it.
-	 */
-	align = ralign;
-
-	/* Get cache's description obj. */
-	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
-	if (!cachep)
-		goto oops;
-
-#if DEBUG
-	cachep->obj_size = size;
-
-	/*
-	 * Both debugging options require word-alignment which is calculated
-	 * into align above.
-	 */
-	if (flags & SLAB_RED_ZONE) {
-		/* add space for red zone words */
-		cachep->obj_offset += sizeof(unsigned long long);
-		size += 2 * sizeof(unsigned long long);
-	}
-	if (flags & SLAB_STORE_USER) {
-		/* user store requires one word storage behind the end of
-		 * the real object.
-		 */
-		size += BYTES_PER_WORD;
-	}
-#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
-	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
-	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
-		cachep->obj_offset += PAGE_SIZE - size;
-		size = PAGE_SIZE;
-	}
-#endif
-#endif
-
-	/*
-	 * Determine if the slab management is 'on' or 'off' slab.
-	 * (bootstrapping cannot cope with offslab caches so don't do
-	 * it too early on.)
-	 */
-	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
-		/*
-		 * Size is large, assume best to place the slab management obj
-		 * off-slab (should allow better packing of objs).
-		 */
-		flags |= CFLGS_OFF_SLAB;
-
-	size = ALIGN(size, align);
-
-	left_over = calculate_slab_order(cachep, size, align, flags);
-
-	if (!cachep->num) {
-		printk(KERN_ERR
-		       "kmem_cache_create: couldn't create cache %s.\n", name);
-		kmem_cache_free(&cache_cache, cachep);
-		cachep = NULL;
-		goto oops;
-	}
-	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
-			  + sizeof(struct slab), align);
-
-	/*
-	 * If the slab has been placed off-slab, and we have enough space then
-	 * move it on-slab. This is at the expense of any extra colouring.
-	 */
-	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
-		flags &= ~CFLGS_OFF_SLAB;
-		left_over -= slab_size;
-	}
-
-	if (flags & CFLGS_OFF_SLAB) {
-		/* really off slab. No need for manual alignment */
-		slab_size =
-		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
-	}
-
-	cachep->colour_off = cache_line_size();
-	/* Offset must be a multiple of the alignment. */
-	if (cachep->colour_off < align)
-		cachep->colour_off = align;
-	cachep->colour = left_over / cachep->colour_off;
-	cachep->slab_size = slab_size;
-	cachep->flags = flags;
-	cachep->gfpflags = 0;
-	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
-		cachep->gfpflags |= GFP_DMA;
-	cachep->buffer_size = size;
-	cachep->reciprocal_buffer_size = reciprocal_value(size);
-
-	if (flags & CFLGS_OFF_SLAB) {
-		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
-		/*
-		 * This is a possibility for one of the malloc_sizes caches.
-		 * But since we go off slab only for object size greater than
-		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
-		 * this should not happen at all.
-		 * But leave a BUG_ON for some lucky dude.
-		 */
-		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
-	}
-	cachep->ctor = ctor;
-	cachep->name = name;
-
-	if (setup_cpu_cache(cachep)) {
-		__kmem_cache_destroy(cachep);
-		cachep = NULL;
-		goto oops;
-	}
-
-	/* cache setup completed, link it into the list */
-	list_add(&cachep->next, &cache_chain);
-oops:
-	if (!cachep && (flags & SLAB_PANIC))
-		panic("kmem_cache_create(): failed to create slab `%s'\n",
-		      name);
-	mutex_unlock(&cache_chain_mutex);
-	return cachep;
-}
-EXPORT_SYMBOL(kmem_cache_create);
-
-#if DEBUG
-static void check_irq_off(void)
-{
-	BUG_ON(!irqs_disabled());
-}
-
-static void check_irq_on(void)
-{
-	BUG_ON(irqs_disabled());
-}
-
-static void check_spinlock_acquired(struct kmem_cache *cachep)
-{
-#ifdef CONFIG_SMP
-	check_irq_off();
-	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
-#endif
-}
-
-static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
-{
-#ifdef CONFIG_SMP
-	check_irq_off();
-	assert_spin_locked(&cachep->nodelists[node]->list_lock);
-#endif
-}
-
-#else
-#define check_irq_off()	do { } while(0)
-#define check_irq_on()	do { } while(0)
-#define check_spinlock_acquired(x) do { } while(0)
-#define check_spinlock_acquired_node(x, y) do { } while(0)
-#endif
-
-static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
-			struct array_cache *ac,
-			int force, int node);
-
-static void do_drain(void *arg)
-{
-	struct kmem_cache *cachep = arg;
-	struct array_cache *ac;
-	int node = numa_node_id();
-
-	check_irq_off();
-	ac = cpu_cache_get(cachep);
-	spin_lock(&cachep->nodelists[node]->list_lock);
-	free_block(cachep, ac->entry, ac->avail, node);
-	spin_unlock(&cachep->nodelists[node]->list_lock);
-	ac->avail = 0;
-}
-
-static void drain_cpu_caches(struct kmem_cache *cachep)
-{
-	struct kmem_list3 *l3;
-	int node;
-
-	on_each_cpu(do_drain, cachep, 1, 1);
-	check_irq_on();
-	for_each_online_node(node) {
-		l3 = cachep->nodelists[node];
-		if (l3 && l3->alien)
-			drain_alien_cache(cachep, l3->alien);
-	}
-
-	for_each_online_node(node) {
-		l3 = cachep->nodelists[node];
-		if (l3)
-			drain_array(cachep, l3, l3->shared, 1, node);
-	}
-}
-
-/*
- * Remove slabs from the list of free slabs.
- * Specify the number of slabs to drain in tofree.
- *
- * Returns the actual number of slabs released.
- */
-static int drain_freelist(struct kmem_cache *cache,
-			struct kmem_list3 *l3, int tofree)
-{
-	struct list_head *p;
-	int nr_freed;
-	struct slab *slabp;
-
-	nr_freed = 0;
-	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
-
-		spin_lock_irq(&l3->list_lock);
-		p = l3->slabs_free.prev;
-		if (p == &l3->slabs_free) {
-			spin_unlock_irq(&l3->list_lock);
-			goto out;
-		}
-
-		slabp = list_entry(p, struct slab, list);
-#if DEBUG
-		BUG_ON(slabp->inuse);
-#endif
-		list_del(&slabp->list);
-		/*
-		 * Safe to drop the lock. The slab is no longer linked
-		 * to the cache.
-		 */
-		l3->free_objects -= cache->num;
-		spin_unlock_irq(&l3->list_lock);
-		slab_destroy(cache, slabp);
-		nr_freed++;
-	}
-out:
-	return nr_freed;
-}
-
-/* Called with cache_chain_mutex held to protect against cpu hotplug */
-static int __cache_shrink(struct kmem_cache *cachep)
-{
-	int ret = 0, i = 0;
-	struct kmem_list3 *l3;
-
-	drain_cpu_caches(cachep);
-
-	check_irq_on();
-	for_each_online_node(i) {
-		l3 = cachep->nodelists[i];
-		if (!l3)
-			continue;
-
-		drain_freelist(cachep, l3, l3->free_objects);
-
-		ret += !list_empty(&l3->slabs_full) ||
-			!list_empty(&l3->slabs_partial);
-	}
-	return (ret ? 1 : 0);
-}
-
-/**
- * kmem_cache_shrink - Shrink a cache.
- * @cachep: The cache to shrink.
- *
- * Releases as many slabs as possible for a cache.
- * To help debugging, a zero exit status indicates all slabs were released.
- */
-int kmem_cache_shrink(struct kmem_cache *cachep)
-{
-	int ret;
-	BUG_ON(!cachep || in_interrupt());
-
-	mutex_lock(&cache_chain_mutex);
-	ret = __cache_shrink(cachep);
-	mutex_unlock(&cache_chain_mutex);
-	return ret;
-}
-EXPORT_SYMBOL(kmem_cache_shrink);
-
-int kmem_cache_defrag(int percent, int node)
-{
-	return 0;
-}
-
-/*
- * SLAB does not support slab defragmentation
- */
-int kmem_cache_vacate(struct page *page)
-{
-	return 0;
-}
-EXPORT_SYMBOL(kmem_cache_vacate);
-
-/**
- * kmem_cache_destroy - delete a cache
- * @cachep: the cache to destroy
- *
- * Remove a &struct kmem_cache object from the slab cache.
- *
- * It is expected this function will be called by a module when it is
- * unloaded.  This will remove the cache completely, and avoid a duplicate
- * cache being allocated each time a module is loaded and unloaded, if the
- * module doesn't have persistent in-kernel storage across loads and unloads.
- *
- * The cache must be empty before calling this function.
- *
- * The caller must guarantee that noone will allocate memory from the cache
- * during the kmem_cache_destroy().
- */
-void kmem_cache_destroy(struct kmem_cache *cachep)
-{
-	BUG_ON(!cachep || in_interrupt());
-
-	/* Find the cache in the chain of caches. */
-	mutex_lock(&cache_chain_mutex);
-	/*
-	 * the chain is never empty, cache_cache is never destroyed
-	 */
-	list_del(&cachep->next);
-	if (__cache_shrink(cachep)) {
-		slab_error(cachep, "Can't free all objects");
-		list_add(&cachep->next, &cache_chain);
-		mutex_unlock(&cache_chain_mutex);
-		return;
-	}
-
-	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
-		synchronize_rcu();
-
-	__kmem_cache_destroy(cachep);
-	mutex_unlock(&cache_chain_mutex);
-}
-EXPORT_SYMBOL(kmem_cache_destroy);
-
-/*
- * Get the memory for a slab management obj.
- * For a slab cache when the slab descriptor is off-slab, slab descriptors
- * always come from malloc_sizes caches.  The slab descriptor cannot
- * come from the same cache which is getting created because,
- * when we are searching for an appropriate cache for these
- * descriptors in kmem_cache_create, we search through the malloc_sizes array.
- * If we are creating a malloc_sizes cache here it would not be visible to
- * kmem_find_general_cachep till the initialization is complete.
- * Hence we cannot have slabp_cache same as the original cache.
- */
-static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
-				   int colour_off, gfp_t local_flags,
-				   int nodeid)
-{
-	struct slab *slabp;
-
-	if (OFF_SLAB(cachep)) {
-		/* Slab management obj is off-slab. */
-		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
-					      local_flags & ~GFP_THISNODE, nodeid);
-		if (!slabp)
-			return NULL;
-	} else {
-		slabp = objp + colour_off;
-		colour_off += cachep->slab_size;
-	}
-	slabp->inuse = 0;
-	slabp->colouroff = colour_off;
-	slabp->s_mem = objp + colour_off;
-	slabp->nodeid = nodeid;
-	return slabp;
-}
-
-static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
-{
-	return (kmem_bufctl_t *) (slabp + 1);
-}
-
-static void cache_init_objs(struct kmem_cache *cachep,
-			    struct slab *slabp)
-{
-	int i;
-
-	for (i = 0; i < cachep->num; i++) {
-		void *objp = index_to_obj(cachep, slabp, i);
-#if DEBUG
-		/* need to poison the objs? */
-		if (cachep->flags & SLAB_POISON)
-			poison_obj(cachep, objp, POISON_FREE);
-		if (cachep->flags & SLAB_STORE_USER)
-			*dbg_userword(cachep, objp) = NULL;
-
-		if (cachep->flags & SLAB_RED_ZONE) {
-			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
-			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
-		}
-		/*
-		 * Constructors are not allowed to allocate memory from the same
-		 * cache which they are a constructor for.  Otherwise, deadlock.
-		 * They must also be threaded.
-		 */
-		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
-			cachep->ctor(objp + obj_offset(cachep), cachep,
-				     0);
-
-		if (cachep->flags & SLAB_RED_ZONE) {
-			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
-				slab_error(cachep, "constructor overwrote the"
-					   " end of an object");
-			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
-				slab_error(cachep, "constructor overwrote the"
-					   " start of an object");
-		}
-		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
-			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
-			kernel_map_pages(virt_to_page(objp),
-					 cachep->buffer_size / PAGE_SIZE, 0);
-#else
-		if (cachep->ctor)
-			cachep->ctor(objp, cachep, 0);
-#endif
-		slab_bufctl(slabp)[i] = i + 1;
-	}
-	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
-	slabp->free = 0;
-}
-
-static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
-{
-	if (CONFIG_ZONE_DMA_FLAG) {
-		if (flags & GFP_DMA)
-			BUG_ON(!(cachep->gfpflags & GFP_DMA));
-		else
-			BUG_ON(cachep->gfpflags & GFP_DMA);
-	}
-}
-
-static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
-				int nodeid)
-{
-	void *objp = index_to_obj(cachep, slabp, slabp->free);
-	kmem_bufctl_t next;
-
-	slabp->inuse++;
-	next = slab_bufctl(slabp)[slabp->free];
-#if DEBUG
-	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
-	WARN_ON(slabp->nodeid != nodeid);
-#endif
-	slabp->free = next;
-
-	return objp;
-}
-
-static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
-				void *objp, int nodeid)
-{
-	unsigned int objnr = obj_to_index(cachep, slabp, objp);
-
-#if DEBUG
-	/* Verify that the slab belongs to the intended node */
-	WARN_ON(slabp->nodeid != nodeid);
-
-	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
-		printk(KERN_ERR "slab: double free detected in cache "
-				"'%s', objp %p\n", cachep->name, objp);
-		BUG();
-	}
-#endif
-	slab_bufctl(slabp)[objnr] = slabp->free;
-	slabp->free = objnr;
-	slabp->inuse--;
-}
-
-/*
- * Map pages beginning at addr to the given cache and slab. This is required
- * for the slab allocator to be able to lookup the cache and slab of a
- * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
- */
-static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
-			   void *addr)
-{
-	int nr_pages;
-	struct page *page;
-
-	page = virt_to_page(addr);
-
-	nr_pages = 1;
-	if (likely(!PageCompound(page)))
-		nr_pages <<= cache->gfporder;
-
-	do {
-		page_set_cache(page, cache);
-		page_set_slab(page, slab);
-		page++;
-	} while (--nr_pages);
-}
-
-/*
- * Grow (by 1) the number of slabs within a cache.  This is called by
- * kmem_cache_alloc() when there are no active objs left in a cache.
- */
-static int cache_grow(struct kmem_cache *cachep,
-		gfp_t flags, int nodeid, void *objp)
-{
-	struct slab *slabp;
-	size_t offset;
-	gfp_t local_flags;
-	struct kmem_list3 *l3;
-
-	/*
-	 * Be lazy and only check for valid flags here,  keeping it out of the
-	 * critical path in kmem_cache_alloc().
-	 */
-	BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
-
-	local_flags = (flags & GFP_LEVEL_MASK);
-	/* Take the l3 list lock to change the colour_next on this node */
-	check_irq_off();
-	l3 = cachep->nodelists[nodeid];
-	spin_lock(&l3->list_lock);
-
-	/* Get colour for the slab, and cal the next value. */
-	offset = l3->colour_next;
-	l3->colour_next++;
-	if (l3->colour_next >= cachep->colour)
-		l3->colour_next = 0;
-	spin_unlock(&l3->list_lock);
-
-	offset *= cachep->colour_off;
-
-	if (local_flags & __GFP_WAIT)
-		local_irq_enable();
-
-	/*
-	 * The test for missing atomic flag is performed here, rather than
-	 * the more obvious place, simply to reduce the critical path length
-	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
-	 * will eventually be caught here (where it matters).
-	 */
-	kmem_flagcheck(cachep, flags);
-
-	/*
-	 * Get mem for the objs.  Attempt to allocate a physical page from
-	 * 'nodeid'.
-	 */
-	if (!objp)
-		objp = kmem_getpages(cachep, flags, nodeid);
-	if (!objp)
-		goto failed;
-
-	/* Get slab management. */
-	slabp = alloc_slabmgmt(cachep, objp, offset,
-			local_flags & ~GFP_THISNODE, nodeid);
-	if (!slabp)
-		goto opps1;
-
-	slabp->nodeid = nodeid;
-	slab_map_pages(cachep, slabp, objp);
-
-	cache_init_objs(cachep, slabp);
-
-	if (local_flags & __GFP_WAIT)
-		local_irq_disable();
-	check_irq_off();
-	spin_lock(&l3->list_lock);
-
-	/* Make slab active. */
-	list_add_tail(&slabp->list, &(l3->slabs_free));
-	STATS_INC_GROWN(cachep);
-	l3->free_objects += cachep->num;
-	spin_unlock(&l3->list_lock);
-	return 1;
-opps1:
-	kmem_freepages(cachep, objp);
-failed:
-	if (local_flags & __GFP_WAIT)
-		local_irq_disable();
-	return 0;
-}
-
-#if DEBUG
-
-/*
- * Perform extra freeing checks:
- * - detect bad pointers.
- * - POISON/RED_ZONE checking
- */
-static void kfree_debugcheck(const void *objp)
-{
-	if (!virt_addr_valid(objp)) {
-		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
-		       (unsigned long)objp);
-		BUG();
-	}
-}
-
-static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
-{
-	unsigned long long redzone1, redzone2;
-
-	redzone1 = *dbg_redzone1(cache, obj);
-	redzone2 = *dbg_redzone2(cache, obj);
-
-	/*
-	 * Redzone is ok.
-	 */
-	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
-		return;
-
-	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
-		slab_error(cache, "double free detected");
-	else
-		slab_error(cache, "memory outside object was overwritten");
-
-	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
-			obj, redzone1, redzone2);
-}
-
-static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
-				   void *caller)
-{
-	struct page *page;
-	unsigned int objnr;
-	struct slab *slabp;
-
-	objp -= obj_offset(cachep);
-	kfree_debugcheck(objp);
-	page = virt_to_head_page(objp);
-
-	slabp = page_get_slab(page);
-
-	if (cachep->flags & SLAB_RED_ZONE) {
-		verify_redzone_free(cachep, objp);
-		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
-		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
-	}
-	if (cachep->flags & SLAB_STORE_USER)
-		*dbg_userword(cachep, objp) = caller;
-
-	objnr = obj_to_index(cachep, slabp, objp);
-
-	BUG_ON(objnr >= cachep->num);
-	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
-
-#ifdef CONFIG_DEBUG_SLAB_LEAK
-	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
-#endif
-	if (cachep->flags & SLAB_POISON) {
-#ifdef CONFIG_DEBUG_PAGEALLOC
-		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
-			store_stackinfo(cachep, objp, (unsigned long)caller);
-			kernel_map_pages(virt_to_page(objp),
-					 cachep->buffer_size / PAGE_SIZE, 0);
-		} else {
-			poison_obj(cachep, objp, POISON_FREE);
-		}
-#else
-		poison_obj(cachep, objp, POISON_FREE);
-#endif
-	}
-	return objp;
-}
-
-static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
-{
-	kmem_bufctl_t i;
-	int entries = 0;
-
-	/* Check slab's freelist to see if this obj is there. */
-	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
-		entries++;
-		if (entries > cachep->num || i >= cachep->num)
-			goto bad;
-	}
-	if (entries != cachep->num - slabp->inuse) {
-bad:
-		printk(KERN_ERR "slab: Internal list corruption detected in "
-				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
-			cachep->name, cachep->num, slabp, slabp->inuse);
-		for (i = 0;
-		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
-		     i++) {
-			if (i % 16 == 0)
-				printk("\n%03x:", i);
-			printk(" %02x", ((unsigned char *)slabp)[i]);
-		}
-		printk("\n");
-		BUG();
-	}
-}
-#else
-#define kfree_debugcheck(x) do { } while(0)
-#define cache_free_debugcheck(x,objp,z) (objp)
-#define check_slabp(x,y) do { } while(0)
-#endif
-
-static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
-{
-	int batchcount;
-	struct kmem_list3 *l3;
-	struct array_cache *ac;
-	int node;
-
-	node = numa_node_id();
-
-	check_irq_off();
-	ac = cpu_cache_get(cachep);
-retry:
-	batchcount = ac->batchcount;
-	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
-		/*
-		 * If there was little recent activity on this cache, then
-		 * perform only a partial refill.  Otherwise we could generate
-		 * refill bouncing.
-		 */
-		batchcount = BATCHREFILL_LIMIT;
-	}
-	l3 = cachep->nodelists[node];
-
-	BUG_ON(ac->avail > 0 || !l3);
-	spin_lock(&l3->list_lock);
-
-	/* See if we can refill from the shared array */
-	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
-		goto alloc_done;
-
-	while (batchcount > 0) {
-		struct list_head *entry;
-		struct slab *slabp;
-		/* Get slab alloc is to come from. */
-		entry = l3->slabs_partial.next;
-		if (entry == &l3->slabs_partial) {
-			l3->free_touched = 1;
-			entry = l3->slabs_free.next;
-			if (entry == &l3->slabs_free)
-				goto must_grow;
-		}
-
-		slabp = list_entry(entry, struct slab, list);
-		check_slabp(cachep, slabp);
-		check_spinlock_acquired(cachep);
-
-		/*
-		 * The slab was either on partial or free list so
-		 * there must be at least one object available for
-		 * allocation.
-		 */
-		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
-
-		while (slabp->inuse < cachep->num && batchcount--) {
-			STATS_INC_ALLOCED(cachep);
-			STATS_INC_ACTIVE(cachep);
-			STATS_SET_HIGH(cachep);
-
-			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
-							    node);
-		}
-		check_slabp(cachep, slabp);
-
-		/* move slabp to correct slabp list: */
-		list_del(&slabp->list);
-		if (slabp->free == BUFCTL_END)
-			list_add(&slabp->list, &l3->slabs_full);
-		else
-			list_add(&slabp->list, &l3->slabs_partial);
-	}
-
-must_grow:
-	l3->free_objects -= ac->avail;
-alloc_done:
-	spin_unlock(&l3->list_lock);
-
-	if (unlikely(!ac->avail)) {
-		int x;
-		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
-
-		/* cache_grow can reenable interrupts, then ac could change. */
-		ac = cpu_cache_get(cachep);
-		if (!x && ac->avail == 0)	/* no objects in sight? abort */
-			return NULL;
-
-		if (!ac->avail)		/* objects refilled by interrupt? */
-			goto retry;
-	}
-	ac->touched = 1;
-	return ac->entry[--ac->avail];
-}
-
-static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
-						gfp_t flags)
-{
-	might_sleep_if(flags & __GFP_WAIT);
-#if DEBUG
-	kmem_flagcheck(cachep, flags);
-#endif
-}
-
-#if DEBUG
-static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
-				gfp_t flags, void *objp, void *caller)
-{
-	if (!objp)
-		return objp;
-	if (cachep->flags & SLAB_POISON) {
-#ifdef CONFIG_DEBUG_PAGEALLOC
-		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
-			kernel_map_pages(virt_to_page(objp),
-					 cachep->buffer_size / PAGE_SIZE, 1);
-		else
-			check_poison_obj(cachep, objp);
-#else
-		check_poison_obj(cachep, objp);
-#endif
-		poison_obj(cachep, objp, POISON_INUSE);
-	}
-	if (cachep->flags & SLAB_STORE_USER)
-		*dbg_userword(cachep, objp) = caller;
-
-	if (cachep->flags & SLAB_RED_ZONE) {
-		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
-				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
-			slab_error(cachep, "double free, or memory outside"
-						" object was overwritten");
-			printk(KERN_ERR
-				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
-				objp, *dbg_redzone1(cachep, objp),
-				*dbg_redzone2(cachep, objp));
-		}
-		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
-		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
-	}
-#ifdef CONFIG_DEBUG_SLAB_LEAK
-	{
-		struct slab *slabp;
-		unsigned objnr;
-
-		slabp = page_get_slab(virt_to_head_page(objp));
-		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
-		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
-	}
-#endif
-	objp += obj_offset(cachep);
-	if (cachep->ctor && cachep->flags & SLAB_POISON)
-		cachep->ctor(objp, cachep, 0);
-#if ARCH_SLAB_MINALIGN
-	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
-		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
-		       objp, ARCH_SLAB_MINALIGN);
-	}
-#endif
-	return objp;
-}
-#else
-#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
-#endif
-
-#ifdef CONFIG_FAILSLAB
-
-static struct failslab_attr {
-
-	struct fault_attr attr;
-
-	u32 ignore_gfp_wait;
-#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
-	struct dentry *ignore_gfp_wait_file;
-#endif
-
-} failslab = {
-	.attr = FAULT_ATTR_INITIALIZER,
-	.ignore_gfp_wait = 1,
-};
-
-static int __init setup_failslab(char *str)
-{
-	return setup_fault_attr(&failslab.attr, str);
-}
-__setup("failslab=", setup_failslab);
-
-static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
-{
-	if (cachep == &cache_cache)
-		return 0;
-	if (flags & __GFP_NOFAIL)
-		return 0;
-	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
-		return 0;
-
-	return should_fail(&failslab.attr, obj_size(cachep));
-}
-
-#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
-
-static int __init failslab_debugfs(void)
-{
-	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
-	struct dentry *dir;
-	int err;
-
-	err = init_fault_attr_dentries(&failslab.attr, "failslab");
-	if (err)
-		return err;
-	dir = failslab.attr.dentries.dir;
-
-	failslab.ignore_gfp_wait_file =
-		debugfs_create_bool("ignore-gfp-wait", mode, dir,
-				      &failslab.ignore_gfp_wait);
-
-	if (!failslab.ignore_gfp_wait_file) {
-		err = -ENOMEM;
-		debugfs_remove(failslab.ignore_gfp_wait_file);
-		cleanup_fault_attr_dentries(&failslab.attr);
-	}
-
-	return err;
-}
-
-late_initcall(failslab_debugfs);
-
-#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
-
-#else /* CONFIG_FAILSLAB */
-
-static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
-{
-	return 0;
-}
-
-#endif /* CONFIG_FAILSLAB */
-
-static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
-{
-	void *objp;
-	struct array_cache *ac;
-
-	check_irq_off();
-
-	ac = cpu_cache_get(cachep);
-	if (likely(ac->avail)) {
-		STATS_INC_ALLOCHIT(cachep);
-		ac->touched = 1;
-		objp = ac->entry[--ac->avail];
-	} else {
-		STATS_INC_ALLOCMISS(cachep);
-		objp = cache_alloc_refill(cachep, flags);
-	}
-	return objp;
-}
-
-#ifdef CONFIG_NUMA
-/*
- * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
- *
- * If we are in_interrupt, then process context, including cpusets and
- * mempolicy, may not apply and should not be used for allocation policy.
- */
-static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
-{
-	int nid_alloc, nid_here;
-
-	if (in_interrupt() || (flags & __GFP_THISNODE))
-		return NULL;
-	nid_alloc = nid_here = numa_node_id();
-	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
-		nid_alloc = cpuset_mem_spread_node();
-	else if (current->mempolicy)
-		nid_alloc = slab_node(current->mempolicy);
-	if (nid_alloc != nid_here)
-		return ____cache_alloc_node(cachep, flags, nid_alloc);
-	return NULL;
-}
-
-/*
- * Fallback function if there was no memory available and no objects on a
- * certain node and fall back is permitted. First we scan all the
- * available nodelists for available objects. If that fails then we
- * perform an allocation without specifying a node. This allows the page
- * allocator to do its reclaim / fallback magic. We then insert the
- * slab into the proper nodelist and then allocate from it.
- */
-static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
-{
-	struct zonelist *zonelist;
-	gfp_t local_flags;
-	struct zone **z;
-	void *obj = NULL;
-	int nid;
-
-	if (flags & __GFP_THISNODE)
-		return NULL;
-
-	zonelist = &NODE_DATA(slab_node(current->mempolicy))
-			->node_zonelists[gfp_zone(flags)];
-	local_flags = (flags & GFP_LEVEL_MASK);
-
-retry:
-	/*
-	 * Look through allowed nodes for objects available
-	 * from existing per node queues.
-	 */
-	for (z = zonelist->zones; *z && !obj; z++) {
-		nid = zone_to_nid(*z);
-
-		if (cpuset_zone_allowed_hardwall(*z, flags) &&
-			cache->nodelists[nid] &&
-			cache->nodelists[nid]->free_objects)
-				obj = ____cache_alloc_node(cache,
-					flags | GFP_THISNODE, nid);
-	}
-
-	if (!obj) {
-		/*
-		 * This allocation will be performed within the constraints
-		 * of the current cpuset / memory policy requirements.
-		 * We may trigger various forms of reclaim on the allowed
-		 * set and go into memory reserves if necessary.
-		 */
-		if (local_flags & __GFP_WAIT)
-			local_irq_enable();
-		kmem_flagcheck(cache, flags);
-		obj = kmem_getpages(cache, flags, -1);
-		if (local_flags & __GFP_WAIT)
-			local_irq_disable();
-		if (obj) {
-			/*
-			 * Insert into the appropriate per node queues
-			 */
-			nid = page_to_nid(virt_to_page(obj));
-			if (cache_grow(cache, flags, nid, obj)) {
-				obj = ____cache_alloc_node(cache,
-					flags | GFP_THISNODE, nid);
-				if (!obj)
-					/*
-					 * Another processor may allocate the
-					 * objects in the slab since we are
-					 * not holding any locks.
-					 */
-					goto retry;
-			} else {
-				/* cache_grow already freed obj */
-				obj = NULL;
-			}
-		}
-	}
-	return obj;
-}
-
-/*
- * A interface to enable slab creation on nodeid
- */
-static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
-				int nodeid)
-{
-	struct list_head *entry;
-	struct slab *slabp;
-	struct kmem_list3 *l3;
-	void *obj;
-	int x;
-
-	l3 = cachep->nodelists[nodeid];
-	BUG_ON(!l3);
-
-retry:
-	check_irq_off();
-	spin_lock(&l3->list_lock);
-	entry = l3->slabs_partial.next;
-	if (entry == &l3->slabs_partial) {
-		l3->free_touched = 1;
-		entry = l3->slabs_free.next;
-		if (entry == &l3->slabs_free)
-			goto must_grow;
-	}
-
-	slabp = list_entry(entry, struct slab, list);
-	check_spinlock_acquired_node(cachep, nodeid);
-	check_slabp(cachep, slabp);
-
-	STATS_INC_NODEALLOCS(cachep);
-	STATS_INC_ACTIVE(cachep);
-	STATS_SET_HIGH(cachep);
-
-	BUG_ON(slabp->inuse == cachep->num);
-
-	obj = slab_get_obj(cachep, slabp, nodeid);
-	check_slabp(cachep, slabp);
-	l3->free_objects--;
-	/* move slabp to correct slabp list: */
-	list_del(&slabp->list);
-
-	if (slabp->free == BUFCTL_END)
-		list_add(&slabp->list, &l3->slabs_full);
-	else
-		list_add(&slabp->list, &l3->slabs_partial);
-
-	spin_unlock(&l3->list_lock);
-	goto done;
-
-must_grow:
-	spin_unlock(&l3->list_lock);
-	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
-	if (x)
-		goto retry;
-
-	return fallback_alloc(cachep, flags);
-
-done:
-	return obj;
-}
-
-/**
- * kmem_cache_alloc_node - Allocate an object on the specified node
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- * @nodeid: node number of the target node.
- * @caller: return address of caller, used for debug information
- *
- * Identical to kmem_cache_alloc but it will allocate memory on the given
- * node, which can improve the performance for cpu bound structures.
- *
- * Fallback to other node is possible if __GFP_THISNODE is not set.
- */
-static __always_inline void *
-__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
-		   void *caller)
-{
-	unsigned long save_flags;
-	void *ptr;
-
-	if (should_failslab(cachep, flags))
-		return NULL;
-
-	cache_alloc_debugcheck_before(cachep, flags);
-	local_irq_save(save_flags);
-
-	if (unlikely(nodeid == -1))
-		nodeid = numa_node_id();
-
-	if (unlikely(!cachep->nodelists[nodeid])) {
-		/* Node not bootstrapped yet */
-		ptr = fallback_alloc(cachep, flags);
-		goto out;
-	}
-
-	if (nodeid == numa_node_id()) {
-		/*
-		 * Use the locally cached objects if possible.
-		 * However ____cache_alloc does not allow fallback
-		 * to other nodes. It may fail while we still have
-		 * objects on other nodes available.
-		 */
-		ptr = ____cache_alloc(cachep, flags);
-		if (ptr)
-			goto out;
-	}
-	/* ___cache_alloc_node can fall back to other nodes */
-	ptr = ____cache_alloc_node(cachep, flags, nodeid);
-  out:
-	local_irq_restore(save_flags);
-	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
-
-	if (unlikely((flags & __GFP_ZERO) && ptr))
-		memset(ptr, 0, obj_size(cachep));
-
-	return ptr;
-}
-
-static __always_inline void *
-__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
-{
-	void *objp;
-
-	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
-		objp = alternate_node_alloc(cache, flags);
-		if (objp)
-			goto out;
-	}
-	objp = ____cache_alloc(cache, flags);
-
-	/*
-	 * We may just have run out of memory on the local node.
-	 * ____cache_alloc_node() knows how to locate memory on other nodes
-	 */
- 	if (!objp)
- 		objp = ____cache_alloc_node(cache, flags, numa_node_id());
-
-  out:
-	return objp;
-}
-#else
-
-static __always_inline void *
-__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
-{
-	return ____cache_alloc(cachep, flags);
-}
-
-#endif /* CONFIG_NUMA */
-
-static __always_inline void *
-__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
-{
-	unsigned long save_flags;
-	void *objp;
-
-	if (should_failslab(cachep, flags))
-		return NULL;
-
-	cache_alloc_debugcheck_before(cachep, flags);
-	local_irq_save(save_flags);
-	objp = __do_cache_alloc(cachep, flags);
-	local_irq_restore(save_flags);
-	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
-	prefetchw(objp);
-
-	if (unlikely((flags & __GFP_ZERO) && objp))
-		memset(objp, 0, obj_size(cachep));
-
-	return objp;
-}
-
-/*
- * Caller needs to acquire correct kmem_list's list_lock
- */
-static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
-		       int node)
-{
-	int i;
-	struct kmem_list3 *l3;
-
-	for (i = 0; i < nr_objects; i++) {
-		void *objp = objpp[i];
-		struct slab *slabp;
-
-		slabp = virt_to_slab(objp);
-		l3 = cachep->nodelists[node];
-		list_del(&slabp->list);
-		check_spinlock_acquired_node(cachep, node);
-		check_slabp(cachep, slabp);
-		slab_put_obj(cachep, slabp, objp, node);
-		STATS_DEC_ACTIVE(cachep);
-		l3->free_objects++;
-		check_slabp(cachep, slabp);
-
-		/* fixup slab chains */
-		if (slabp->inuse == 0) {
-			if (l3->free_objects > l3->free_limit) {
-				l3->free_objects -= cachep->num;
-				/* No need to drop any previously held
-				 * lock here, even if we have a off-slab slab
-				 * descriptor it is guaranteed to come from
-				 * a different cache, refer to comments before
-				 * alloc_slabmgmt.
-				 */
-				slab_destroy(cachep, slabp);
-			} else {
-				list_add(&slabp->list, &l3->slabs_free);
-			}
-		} else {
-			/* Unconditionally move a slab to the end of the
-			 * partial list on free - maximum time for the
-			 * other objects to be freed, too.
-			 */
-			list_add_tail(&slabp->list, &l3->slabs_partial);
-		}
-	}
-}
-
-static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
-{
-	int batchcount;
-	struct kmem_list3 *l3;
-	int node = numa_node_id();
-
-	batchcount = ac->batchcount;
-#if DEBUG
-	BUG_ON(!batchcount || batchcount > ac->avail);
-#endif
-	check_irq_off();
-	l3 = cachep->nodelists[node];
-	spin_lock(&l3->list_lock);
-	if (l3->shared) {
-		struct array_cache *shared_array = l3->shared;
-		int max = shared_array->limit - shared_array->avail;
-		if (max) {
-			if (batchcount > max)
-				batchcount = max;
-			memcpy(&(shared_array->entry[shared_array->avail]),
-			       ac->entry, sizeof(void *) * batchcount);
-			shared_array->avail += batchcount;
-			goto free_done;
-		}
-	}
-
-	free_block(cachep, ac->entry, batchcount, node);
-free_done:
-#if STATS
-	{
-		int i = 0;
-		struct list_head *p;
-
-		p = l3->slabs_free.next;
-		while (p != &(l3->slabs_free)) {
-			struct slab *slabp;
-
-			slabp = list_entry(p, struct slab, list);
-			BUG_ON(slabp->inuse);
-
-			i++;
-			p = p->next;
-		}
-		STATS_SET_FREEABLE(cachep, i);
-	}
-#endif
-	spin_unlock(&l3->list_lock);
-	ac->avail -= batchcount;
-	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
-}
-
-/*
- * Release an obj back to its cache. If the obj has a constructed state, it must
- * be in this state _before_ it is released.  Called with disabled ints.
- */
-static inline void __cache_free(struct kmem_cache *cachep, void *objp)
-{
-	struct array_cache *ac = cpu_cache_get(cachep);
-
-	check_irq_off();
-	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
-
-	if (cache_free_alien(cachep, objp))
-		return;
-
-	if (likely(ac->avail < ac->limit)) {
-		STATS_INC_FREEHIT(cachep);
-		ac->entry[ac->avail++] = objp;
-		return;
-	} else {
-		STATS_INC_FREEMISS(cachep);
-		cache_flusharray(cachep, ac);
-		ac->entry[ac->avail++] = objp;
-	}
-}
-
-/**
- * kmem_cache_alloc - Allocate an object
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- *
- * Allocate an object from this cache.  The flags are only relevant
- * if the cache has no available objects.
- */
-void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
-{
-	return __cache_alloc(cachep, flags, __builtin_return_address(0));
-}
-EXPORT_SYMBOL(kmem_cache_alloc);
-
-/**
- * kmem_ptr_validate - check if an untrusted pointer might
- *	be a slab entry.
- * @cachep: the cache we're checking against
- * @ptr: pointer to validate
- *
- * This verifies that the untrusted pointer looks sane:
- * it is _not_ a guarantee that the pointer is actually
- * part of the slab cache in question, but it at least
- * validates that the pointer can be dereferenced and
- * looks half-way sane.
- *
- * Currently only used for dentry validation.
- */
-int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
-{
-	unsigned long addr = (unsigned long)ptr;
-	unsigned long min_addr = PAGE_OFFSET;
-	unsigned long align_mask = BYTES_PER_WORD - 1;
-	unsigned long size = cachep->buffer_size;
-	struct page *page;
-
-	if (unlikely(addr < min_addr))
-		goto out;
-	if (unlikely(addr > (unsigned long)high_memory - size))
-		goto out;
-	if (unlikely(addr & align_mask))
-		goto out;
-	if (unlikely(!kern_addr_valid(addr)))
-		goto out;
-	if (unlikely(!kern_addr_valid(addr + size - 1)))
-		goto out;
-	page = virt_to_page(ptr);
-	if (unlikely(!PageSlab(page)))
-		goto out;
-	if (unlikely(page_get_cache(page) != cachep))
-		goto out;
-	return 1;
-out:
-	return 0;
-}
-
-#ifdef CONFIG_NUMA
-void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
-{
-	return __cache_alloc_node(cachep, flags, nodeid,
-			__builtin_return_address(0));
-}
-EXPORT_SYMBOL(kmem_cache_alloc_node);
-
-static __always_inline void *
-__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
-{
-	struct kmem_cache *cachep;
-
-	cachep = kmem_find_general_cachep(size, flags);
-	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
-		return cachep;
-	return kmem_cache_alloc_node(cachep, flags, node);
-}
-
-#ifdef CONFIG_DEBUG_SLAB
-void *__kmalloc_node(size_t size, gfp_t flags, int node)
-{
-	return __do_kmalloc_node(size, flags, node,
-			__builtin_return_address(0));
-}
-EXPORT_SYMBOL(__kmalloc_node);
-
-void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
-		int node, void *caller)
-{
-	return __do_kmalloc_node(size, flags, node, caller);
-}
-EXPORT_SYMBOL(__kmalloc_node_track_caller);
-#else
-void *__kmalloc_node(size_t size, gfp_t flags, int node)
-{
-	return __do_kmalloc_node(size, flags, node, NULL);
-}
-EXPORT_SYMBOL(__kmalloc_node);
-#endif /* CONFIG_DEBUG_SLAB */
-#endif /* CONFIG_NUMA */
-
-/**
- * __do_kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate (see kmalloc).
- * @caller: function caller for debug tracking of the caller
- */
-static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
-					  void *caller)
-{
-	struct kmem_cache *cachep;
-
-	/* If you want to save a few bytes .text space: replace
-	 * __ with kmem_.
-	 * Then kmalloc uses the uninlined functions instead of the inline
-	 * functions.
-	 */
-	cachep = __find_general_cachep(size, flags);
-	if (unlikely(cachep == NULL))
-		return NULL;
-	return __cache_alloc(cachep, flags, caller);
-}
-
-
-#ifdef CONFIG_DEBUG_SLAB
-void *__kmalloc(size_t size, gfp_t flags)
-{
-	return __do_kmalloc(size, flags, __builtin_return_address(0));
-}
-EXPORT_SYMBOL(__kmalloc);
-
-void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
-{
-	return __do_kmalloc(size, flags, caller);
-}
-EXPORT_SYMBOL(__kmalloc_track_caller);
-
-#else
-void *__kmalloc(size_t size, gfp_t flags)
-{
-	return __do_kmalloc(size, flags, NULL);
-}
-EXPORT_SYMBOL(__kmalloc);
-#endif
-
-/**
- * kmem_cache_free - Deallocate an object
- * @cachep: The cache the allocation was from.
- * @objp: The previously allocated object.
- *
- * Free an object which was previously allocated from this
- * cache.
- */
-void kmem_cache_free(struct kmem_cache *cachep, void *objp)
-{
-	unsigned long flags;
-
-	BUG_ON(virt_to_cache(objp) != cachep);
-
-	local_irq_save(flags);
-	debug_check_no_locks_freed(objp, obj_size(cachep));
-	__cache_free(cachep, objp);
-	local_irq_restore(flags);
-}
-EXPORT_SYMBOL(kmem_cache_free);
-
-/**
- * kfree - free previously allocated memory
- * @objp: pointer returned by kmalloc.
- *
- * If @objp is NULL, no operation is performed.
- *
- * Don't free memory not originally allocated by kmalloc()
- * or you will run into trouble.
- */
-void kfree(const void *objp)
-{
-	struct kmem_cache *c;
-	unsigned long flags;
-
-	if (unlikely(ZERO_OR_NULL_PTR(objp)))
-		return;
-	local_irq_save(flags);
-	kfree_debugcheck(objp);
-	c = virt_to_cache(objp);
-	debug_check_no_locks_freed(objp, obj_size(c));
-	__cache_free(c, (void *)objp);
-	local_irq_restore(flags);
-}
-EXPORT_SYMBOL(kfree);
-
-unsigned int kmem_cache_size(struct kmem_cache *cachep)
-{
-	return obj_size(cachep);
-}
-EXPORT_SYMBOL(kmem_cache_size);
-
-const char *kmem_cache_name(struct kmem_cache *cachep)
-{
-	return cachep->name;
-}
-EXPORT_SYMBOL_GPL(kmem_cache_name);
-
-/*
- * This initializes kmem_list3 or resizes varioius caches for all nodes.
- */
-static int alloc_kmemlist(struct kmem_cache *cachep)
-{
-	int node;
-	struct kmem_list3 *l3;
-	struct array_cache *new_shared;
-	struct array_cache **new_alien = NULL;
-
-	for_each_online_node(node) {
-
-                if (use_alien_caches) {
-                        new_alien = alloc_alien_cache(node, cachep->limit);
-                        if (!new_alien)
-                                goto fail;
-                }
-
-		new_shared = NULL;
-		if (cachep->shared) {
-			new_shared = alloc_arraycache(node,
-				cachep->shared*cachep->batchcount,
-					0xbaadf00d);
-			if (!new_shared) {
-				free_alien_cache(new_alien);
-				goto fail;
-			}
-		}
-
-		l3 = cachep->nodelists[node];
-		if (l3) {
-			struct array_cache *shared = l3->shared;
-
-			spin_lock_irq(&l3->list_lock);
-
-			if (shared)
-				free_block(cachep, shared->entry,
-						shared->avail, node);
-
-			l3->shared = new_shared;
-			if (!l3->alien) {
-				l3->alien = new_alien;
-				new_alien = NULL;
-			}
-			l3->free_limit = (1 + nr_cpus_node(node)) *
-					cachep->batchcount + cachep->num;
-			spin_unlock_irq(&l3->list_lock);
-			kfree(shared);
-			free_alien_cache(new_alien);
-			continue;
-		}
-		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
-		if (!l3) {
-			free_alien_cache(new_alien);
-			kfree(new_shared);
-			goto fail;
-		}
-
-		kmem_list3_init(l3);
-		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
-				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-		l3->shared = new_shared;
-		l3->alien = new_alien;
-		l3->free_limit = (1 + nr_cpus_node(node)) *
-					cachep->batchcount + cachep->num;
-		cachep->nodelists[node] = l3;
-	}
-	return 0;
-
-fail:
-	if (!cachep->next.next) {
-		/* Cache is not active yet. Roll back what we did */
-		node--;
-		while (node >= 0) {
-			if (cachep->nodelists[node]) {
-				l3 = cachep->nodelists[node];
-
-				kfree(l3->shared);
-				free_alien_cache(l3->alien);
-				kfree(l3);
-				cachep->nodelists[node] = NULL;
-			}
-			node--;
-		}
-	}
-	return -ENOMEM;
-}
-
-struct ccupdate_struct {
-	struct kmem_cache *cachep;
-	struct array_cache *new[NR_CPUS];
-};
-
-static void do_ccupdate_local(void *info)
-{
-	struct ccupdate_struct *new = info;
-	struct array_cache *old;
-
-	check_irq_off();
-	old = cpu_cache_get(new->cachep);
-
-	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
-	new->new[smp_processor_id()] = old;
-}
-
-/* Always called with the cache_chain_mutex held */
-static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
-				int batchcount, int shared)
-{
-	struct ccupdate_struct *new;
-	int i;
-
-	new = kzalloc(sizeof(*new), GFP_KERNEL);
-	if (!new)
-		return -ENOMEM;
-
-	for_each_online_cpu(i) {
-		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
-						batchcount);
-		if (!new->new[i]) {
-			for (i--; i >= 0; i--)
-				kfree(new->new[i]);
-			kfree(new);
-			return -ENOMEM;
-		}
-	}
-	new->cachep = cachep;
-
-	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
-
-	check_irq_on();
-	cachep->batchcount = batchcount;
-	cachep->limit = limit;
-	cachep->shared = shared;
-
-	for_each_online_cpu(i) {
-		struct array_cache *ccold = new->new[i];
-		if (!ccold)
-			continue;
-		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
-		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
-		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
-		kfree(ccold);
-	}
-	kfree(new);
-	return alloc_kmemlist(cachep);
-}
-
-/* Called with cache_chain_mutex held always */
-static int enable_cpucache(struct kmem_cache *cachep)
-{
-	int err;
-	int limit, shared;
-
-	/*
-	 * The head array serves three purposes:
-	 * - create a LIFO ordering, i.e. return objects that are cache-warm
-	 * - reduce the number of spinlock operations.
-	 * - reduce the number of linked list operations on the slab and
-	 *   bufctl chains: array operations are cheaper.
-	 * The numbers are guessed, we should auto-tune as described by
-	 * Bonwick.
-	 */
-	if (cachep->buffer_size > 131072)
-		limit = 1;
-	else if (cachep->buffer_size > PAGE_SIZE)
-		limit = 8;
-	else if (cachep->buffer_size > 1024)
-		limit = 24;
-	else if (cachep->buffer_size > 256)
-		limit = 54;
-	else
-		limit = 120;
-
-	/*
-	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
-	 * allocation behaviour: Most allocs on one cpu, most free operations
-	 * on another cpu. For these cases, an efficient object passing between
-	 * cpus is necessary. This is provided by a shared array. The array
-	 * replaces Bonwick's magazine layer.
-	 * On uniprocessor, it's functionally equivalent (but less efficient)
-	 * to a larger limit. Thus disabled by default.
-	 */
-	shared = 0;
-	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
-		shared = 8;
-
-#if DEBUG
-	/*
-	 * With debugging enabled, large batchcount lead to excessively long
-	 * periods with disabled local interrupts. Limit the batchcount
-	 */
-	if (limit > 32)
-		limit = 32;
-#endif
-	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
-	if (err)
-		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
-		       cachep->name, -err);
-	return err;
-}
-
-/*
- * Drain an array if it contains any elements taking the l3 lock only if
- * necessary. Note that the l3 listlock also protects the array_cache
- * if drain_array() is used on the shared array.
- */
-void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
-			 struct array_cache *ac, int force, int node)
-{
-	int tofree;
-
-	if (!ac || !ac->avail)
-		return;
-	if (ac->touched && !force) {
-		ac->touched = 0;
-	} else {
-		spin_lock_irq(&l3->list_lock);
-		if (ac->avail) {
-			tofree = force ? ac->avail : (ac->limit + 4) / 5;
-			if (tofree > ac->avail)
-				tofree = (ac->avail + 1) / 2;
-			free_block(cachep, ac->entry, tofree, node);
-			ac->avail -= tofree;
-			memmove(ac->entry, &(ac->entry[tofree]),
-				sizeof(void *) * ac->avail);
-		}
-		spin_unlock_irq(&l3->list_lock);
-	}
-}
-
-/**
- * cache_reap - Reclaim memory from caches.
- * @w: work descriptor
- *
- * Called from workqueue/eventd every few seconds.
- * Purpose:
- * - clear the per-cpu caches for this CPU.
- * - return freeable pages to the main free memory pool.
- *
- * If we cannot acquire the cache chain mutex then just give up - we'll try
- * again on the next iteration.
- */
-static void cache_reap(struct work_struct *w)
-{
-	struct kmem_cache *searchp;
-	struct kmem_list3 *l3;
-	int node = numa_node_id();
-	struct delayed_work *work =
-		container_of(w, struct delayed_work, work);
-
-	if (!mutex_trylock(&cache_chain_mutex))
-		/* Give up. Setup the next iteration. */
-		goto out;
-
-	list_for_each_entry(searchp, &cache_chain, next) {
-		check_irq_on();
-
-		/*
-		 * We only take the l3 lock if absolutely necessary and we
-		 * have established with reasonable certainty that
-		 * we can do some work if the lock was obtained.
-		 */
-		l3 = searchp->nodelists[node];
-
-		reap_alien(searchp, l3);
-
-		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
-
-		/*
-		 * These are racy checks but it does not matter
-		 * if we skip one check or scan twice.
-		 */
-		if (time_after(l3->next_reap, jiffies))
-			goto next;
-
-		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
-
-		drain_array(searchp, l3, l3->shared, 0, node);
-
-		if (l3->free_touched)
-			l3->free_touched = 0;
-		else {
-			int freed;
-
-			freed = drain_freelist(searchp, l3, (l3->free_limit +
-				5 * searchp->num - 1) / (5 * searchp->num));
-			STATS_ADD_REAPED(searchp, freed);
-		}
-next:
-		cond_resched();
-	}
-	check_irq_on();
-	mutex_unlock(&cache_chain_mutex);
-	next_reap_node();
-out:
-	/* Set up the next iteration */
-	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
-}
-
-#ifdef CONFIG_PROC_FS
-
-static void print_slabinfo_header(struct seq_file *m)
-{
-	/*
-	 * Output format version, so at least we can change it
-	 * without _too_ many complaints.
-	 */
-#if STATS
-	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
-#else
-	seq_puts(m, "slabinfo - version: 2.1\n");
-#endif
-	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
-		 "<objperslab> <pagesperslab>");
-	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
-	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
-#if STATS
-	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
-		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
-	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
-#endif
-	seq_putc(m, '\n');
-}
-
-static void *s_start(struct seq_file *m, loff_t *pos)
-{
-	loff_t n = *pos;
-
-	mutex_lock(&cache_chain_mutex);
-	if (!n)
-		print_slabinfo_header(m);
-
-	return seq_list_start(&cache_chain, *pos);
-}
-
-static void *s_next(struct seq_file *m, void *p, loff_t *pos)
-{
-	return seq_list_next(p, &cache_chain, pos);
-}
-
-static void s_stop(struct seq_file *m, void *p)
-{
-	mutex_unlock(&cache_chain_mutex);
-}
-
-static int s_show(struct seq_file *m, void *p)
-{
-	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
-	struct slab *slabp;
-	unsigned long active_objs;
-	unsigned long num_objs;
-	unsigned long active_slabs = 0;
-	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
-	const char *name;
-	char *error = NULL;
-	int node;
-	struct kmem_list3 *l3;
-
-	active_objs = 0;
-	num_slabs = 0;
-	for_each_online_node(node) {
-		l3 = cachep->nodelists[node];
-		if (!l3)
-			continue;
-
-		check_irq_on();
-		spin_lock_irq(&l3->list_lock);
-
-		list_for_each_entry(slabp, &l3->slabs_full, list) {
-			if (slabp->inuse != cachep->num && !error)
-				error = "slabs_full accounting error";
-			active_objs += cachep->num;
-			active_slabs++;
-		}
-		list_for_each_entry(slabp, &l3->slabs_partial, list) {
-			if (slabp->inuse == cachep->num && !error)
-				error = "slabs_partial inuse accounting error";
-			if (!slabp->inuse && !error)
-				error = "slabs_partial/inuse accounting error";
-			active_objs += slabp->inuse;
-			active_slabs++;
-		}
-		list_for_each_entry(slabp, &l3->slabs_free, list) {
-			if (slabp->inuse && !error)
-				error = "slabs_free/inuse accounting error";
-			num_slabs++;
-		}
-		free_objects += l3->free_objects;
-		if (l3->shared)
-			shared_avail += l3->shared->avail;
-
-		spin_unlock_irq(&l3->list_lock);
-	}
-	num_slabs += active_slabs;
-	num_objs = num_slabs * cachep->num;
-	if (num_objs - active_objs != free_objects && !error)
-		error = "free_objects accounting error";
-
-	name = cachep->name;
-	if (error)
-		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
-
-	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
-		   name, active_objs, num_objs, cachep->buffer_size,
-		   cachep->num, (1 << cachep->gfporder));
-	seq_printf(m, " : tunables %4u %4u %4u",
-		   cachep->limit, cachep->batchcount, cachep->shared);
-	seq_printf(m, " : slabdata %6lu %6lu %6lu",
-		   active_slabs, num_slabs, shared_avail);
-#if STATS
-	{			/* list3 stats */
-		unsigned long high = cachep->high_mark;
-		unsigned long allocs = cachep->num_allocations;
-		unsigned long grown = cachep->grown;
-		unsigned long reaped = cachep->reaped;
-		unsigned long errors = cachep->errors;
-		unsigned long max_freeable = cachep->max_freeable;
-		unsigned long node_allocs = cachep->node_allocs;
-		unsigned long node_frees = cachep->node_frees;
-		unsigned long overflows = cachep->node_overflow;
-
-		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
-				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
-				reaped, errors, max_freeable, node_allocs,
-				node_frees, overflows);
-	}
-	/* cpu stats */
-	{
-		unsigned long allochit = atomic_read(&cachep->allochit);
-		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
-		unsigned long freehit = atomic_read(&cachep->freehit);
-		unsigned long freemiss = atomic_read(&cachep->freemiss);
-
-		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
-			   allochit, allocmiss, freehit, freemiss);
-	}
-#endif
-	seq_putc(m, '\n');
-	return 0;
-}
-
-/*
- * slabinfo_op - iterator that generates /proc/slabinfo
- *
- * Output layout:
- * cache-name
- * num-active-objs
- * total-objs
- * object size
- * num-active-slabs
- * total-slabs
- * num-pages-per-slab
- * + further values on SMP and with statistics enabled
- */
-
-const struct seq_operations slabinfo_op = {
-	.start = s_start,
-	.next = s_next,
-	.stop = s_stop,
-	.show = s_show,
-};
-
-#define MAX_SLABINFO_WRITE 128
-/**
- * slabinfo_write - Tuning for the slab allocator
- * @file: unused
- * @buffer: user buffer
- * @count: data length
- * @ppos: unused
- */
-ssize_t slabinfo_write(struct file *file, const char __user * buffer,
-		       size_t count, loff_t *ppos)
-{
-	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
-	int limit, batchcount, shared, res;
-	struct kmem_cache *cachep;
-
-	if (count > MAX_SLABINFO_WRITE)
-		return -EINVAL;
-	if (copy_from_user(&kbuf, buffer, count))
-		return -EFAULT;
-	kbuf[MAX_SLABINFO_WRITE] = '\0';
-
-	tmp = strchr(kbuf, ' ');
-	if (!tmp)
-		return -EINVAL;
-	*tmp = '\0';
-	tmp++;
-	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
-		return -EINVAL;
-
-	/* Find the cache in the chain of caches. */
-	mutex_lock(&cache_chain_mutex);
-	res = -EINVAL;
-	list_for_each_entry(cachep, &cache_chain, next) {
-		if (!strcmp(cachep->name, kbuf)) {
-			if (limit < 1 || batchcount < 1 ||
-					batchcount > limit || shared < 0) {
-				res = 0;
-			} else {
-				res = do_tune_cpucache(cachep, limit,
-						       batchcount, shared);
-			}
-			break;
-		}
-	}
-	mutex_unlock(&cache_chain_mutex);
-	if (res >= 0)
-		res = count;
-	return res;
-}
-
-#ifdef CONFIG_DEBUG_SLAB_LEAK
-
-static void *leaks_start(struct seq_file *m, loff_t *pos)
-{
-	mutex_lock(&cache_chain_mutex);
-	return seq_list_start(&cache_chain, *pos);
-}
-
-static inline int add_caller(unsigned long *n, unsigned long v)
-{
-	unsigned long *p;
-	int l;
-	if (!v)
-		return 1;
-	l = n[1];
-	p = n + 2;
-	while (l) {
-		int i = l/2;
-		unsigned long *q = p + 2 * i;
-		if (*q == v) {
-			q[1]++;
-			return 1;
-		}
-		if (*q > v) {
-			l = i;
-		} else {
-			p = q + 2;
-			l -= i + 1;
-		}
-	}
-	if (++n[1] == n[0])
-		return 0;
-	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
-	p[0] = v;
-	p[1] = 1;
-	return 1;
-}
-
-static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
-{
-	void *p;
-	int i;
-	if (n[0] == n[1])
-		return;
-	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
-		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
-			continue;
-		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
-			return;
-	}
-}
-
-static void show_symbol(struct seq_file *m, unsigned long address)
-{
-#ifdef CONFIG_KALLSYMS
-	unsigned long offset, size;
-	char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
-
-	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
-		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
-		if (modname[0])
-			seq_printf(m, " [%s]", modname);
-		return;
-	}
-#endif
-	seq_printf(m, "%p", (void *)address);
-}
-
-static int leaks_show(struct seq_file *m, void *p)
-{
-	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
-	struct slab *slabp;
-	struct kmem_list3 *l3;
-	const char *name;
-	unsigned long *n = m->private;
-	int node;
-	int i;
-
-	if (!(cachep->flags & SLAB_STORE_USER))
-		return 0;
-	if (!(cachep->flags & SLAB_RED_ZONE))
-		return 0;
-
-	/* OK, we can do it */
-
-	n[1] = 0;
-
-	for_each_online_node(node) {
-		l3 = cachep->nodelists[node];
-		if (!l3)
-			continue;
-
-		check_irq_on();
-		spin_lock_irq(&l3->list_lock);
-
-		list_for_each_entry(slabp, &l3->slabs_full, list)
-			handle_slab(n, cachep, slabp);
-		list_for_each_entry(slabp, &l3->slabs_partial, list)
-			handle_slab(n, cachep, slabp);
-		spin_unlock_irq(&l3->list_lock);
-	}
-	name = cachep->name;
-	if (n[0] == n[1]) {
-		/* Increase the buffer size */
-		mutex_unlock(&cache_chain_mutex);
-		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
-		if (!m->private) {
-			/* Too bad, we are really out */
-			m->private = n;
-			mutex_lock(&cache_chain_mutex);
-			return -ENOMEM;
-		}
-		*(unsigned long *)m->private = n[0] * 2;
-		kfree(n);
-		mutex_lock(&cache_chain_mutex);
-		/* Now make sure this entry will be retried */
-		m->count = m->size;
-		return 0;
-	}
-	for (i = 0; i < n[1]; i++) {
-		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
-		show_symbol(m, n[2*i+2]);
-		seq_putc(m, '\n');
-	}
-
-	return 0;
-}
-
-const struct seq_operations slabstats_op = {
-	.start = leaks_start,
-	.next = s_next,
-	.stop = s_stop,
-	.show = leaks_show,
-};
-#endif
-#endif
-
-/**
- * ksize - get the actual amount of memory allocated for a given object
- * @objp: Pointer to the object
- *
- * kmalloc may internally round up allocations and return more memory
- * than requested. ksize() can be used to determine the actual amount of
- * memory allocated. The caller may use this additional memory, even though
- * a smaller amount of memory was initially specified with the kmalloc call.
- * The caller must guarantee that objp points to a valid object previously
- * allocated with either kmalloc() or kmem_cache_alloc(). The object
- * must not be freed during the duration of the call.
- */
-size_t ksize(const void *objp)
-{
-	if (unlikely(ZERO_OR_NULL_PTR(objp)))
-		return 0;
-
-	return obj_size(virt_to_cache(objp));
-}
Index: linux-2.6.22-rc6-mm1/lib/Kconfig.debug
===================================================================
--- linux-2.6.22-rc6-mm1.orig/lib/Kconfig.debug	2007-07-05 23:31:31.000000000 -0700
+++ linux-2.6.22-rc6-mm1/lib/Kconfig.debug	2007-07-05 23:31:45.000000000 -0700
@@ -141,23 +141,6 @@ config TIMER_STATS
 	  (it defaults to deactivated on bootup and will only be activated
 	  if some application like powertop activates it explicitly).
 
-config DEBUG_SLAB
-	bool "Debug slab memory allocations"
-	depends on DEBUG_KERNEL && SLAB
-	help
-	  Say Y here to have the kernel do limited verification on memory
-	  allocation as well as poisoning memory on free to catch use of freed
-	  memory. This can make kmalloc/kfree-intensive workloads much slower.
-
-config DEBUG_SLAB_LEAK
-	bool "Slab memory leak debugging"
-	depends on DEBUG_SLAB
-	default y
-	help
-	  Enable /proc/slab_allocators - provides detailed information about
-	  which parts of the kernel are using slab objects.  May be used for
-	  tracking memory leaks and for instrumenting memory usage.
-
 config SLUB_DEBUG_ON
 	bool "SLUB debugging on by default"
 	depends on SLUB && SLUB_DEBUG
Index: linux-2.6.22-rc6-mm1/fs/proc/proc_misc.c
===================================================================
--- linux-2.6.22-rc6-mm1.orig/fs/proc/proc_misc.c	2007-07-05 23:37:36.000000000 -0700
+++ linux-2.6.22-rc6-mm1/fs/proc/proc_misc.c	2007-07-05 23:38:01.000000000 -0700
@@ -412,47 +412,6 @@ static const struct file_operations proc
 };
 #endif
 
-#ifdef CONFIG_SLAB
-static int slabinfo_open(struct inode *inode, struct file *file)
-{
-	return seq_open(file, &slabinfo_op);
-}
-static const struct file_operations proc_slabinfo_operations = {
-	.open		= slabinfo_open,
-	.read		= seq_read,
-	.write		= slabinfo_write,
-	.llseek		= seq_lseek,
-	.release	= seq_release,
-};
-
-#ifdef CONFIG_DEBUG_SLAB_LEAK
-extern struct seq_operations slabstats_op;
-static int slabstats_open(struct inode *inode, struct file *file)
-{
-	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
-	int ret = -ENOMEM;
-	if (n) {
-		ret = seq_open(file, &slabstats_op);
-		if (!ret) {
-			struct seq_file *m = file->private_data;
-			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
-			m->private = n;
-			n = NULL;
-		}
-		kfree(n);
-	}
-	return ret;
-}
-
-static const struct file_operations proc_slabstats_operations = {
-	.open		= slabstats_open,
-	.read		= seq_read,
-	.llseek		= seq_lseek,
-	.release	= seq_release_private,
-};
-#endif
-#endif
-
 static int show_stat(struct seq_file *p, void *v)
 {
 	int i;
@@ -933,12 +892,6 @@ void __init proc_misc_init(void)
 #endif
 	create_seq_entry("stat", 0, &proc_stat_operations);
 	create_seq_entry("interrupts", 0, &proc_interrupts_operations);
-#ifdef CONFIG_SLAB
-	create_seq_entry("slabinfo",S_IWUSR|S_IRUGO,&proc_slabinfo_operations);
-#ifdef CONFIG_DEBUG_SLAB_LEAK
-	create_seq_entry("slab_allocators", 0 ,&proc_slabstats_operations);
-#endif
-#endif
 	create_seq_entry("buddyinfo",S_IRUGO, &fragmentation_file_operations);
 	create_seq_entry("pagetypeinfo", S_IRUGO, &pagetypeinfo_file_ops);
 	create_seq_entry("vmstat",S_IRUGO, &proc_vmstat_file_operations);

-- 
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [email protected]
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

[Index of Archives]     [Kernel Newbies]     [Netfilter]     [Bugtraq]     [Photo]     [Stuff]     [Gimp]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Video 4 Linux]     [Linux for the blind]     [Linux Resources]
  Powered by Linux