The SLAB functionality has been supplanted by SLUB. Benefits of SLUB
- More compact data store. Less cache footprint
- Reporting function and tools
- Higher speed
- Eliminate SLAB bitrot
Signed-off-by: Christoph Lameter <[email protected]>
---
fs/proc/proc_misc.c | 47
include/linux/slab.h | 18
init/Kconfig | 26
lib/Kconfig.debug | 17
mm/Makefile | 4
mm/slab.c | 4448 ---------------------------------------------------
6 files changed, 2 insertions(+), 4558 deletions(-)
Index: linux-2.6.22-rc6-mm1/include/linux/slab.h
===================================================================
--- linux-2.6.22-rc6-mm1.orig/include/linux/slab.h 2007-07-05 23:28:12.000000000 -0700
+++ linux-2.6.22-rc6-mm1/include/linux/slab.h 2007-07-05 23:36:12.000000000 -0700
@@ -16,7 +16,6 @@
/*
* Flags to pass to kmem_cache_create().
- * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
*/
#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
@@ -154,11 +153,7 @@ size_t ksize(const void *);
* See each allocator definition file for additional comments and
* implementation notes.
*/
-#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
-#else
-#include <linux/slab_def.h>
-#endif
/**
* kcalloc - allocate memory for an array. The memory is set to zero.
@@ -256,14 +251,9 @@ static inline void *kmem_cache_alloc_nod
* allocator where we care about the real place the memory allocation
* request comes from.
*/
-#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
extern void *__kmalloc_track_caller(size_t, gfp_t, void*);
#define kmalloc_track_caller(size, flags) \
__kmalloc_track_caller(size, flags, __builtin_return_address(0))
-#else
-#define kmalloc_track_caller(size, flags) \
- __kmalloc(size, flags)
-#endif /* DEBUG_SLAB */
#ifdef CONFIG_NUMA
/*
@@ -274,22 +264,16 @@ extern void *__kmalloc_track_caller(size
* standard allocator where we care about the real place the memory
* allocation request comes from.
*/
-#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *);
#define kmalloc_node_track_caller(size, flags, node) \
__kmalloc_node_track_caller(size, flags, node, \
__builtin_return_address(0))
-#else
-#define kmalloc_node_track_caller(size, flags, node) \
- __kmalloc_node(size, flags, node)
-#endif
-
#else /* CONFIG_NUMA */
#define kmalloc_node_track_caller(size, flags, node) \
kmalloc_track_caller(size, flags)
-#endif /* DEBUG_SLAB */
+#endif /* CONFIG_NUMA */
/*
* Shortcuts
Index: linux-2.6.22-rc6-mm1/init/Kconfig
===================================================================
--- linux-2.6.22-rc6-mm1.orig/init/Kconfig 2007-07-05 23:30:11.000000000 -0700
+++ linux-2.6.22-rc6-mm1/init/Kconfig 2007-07-06 09:14:48.000000000 -0700
@@ -594,38 +594,12 @@ config VM_EVENT_COUNTERS
config SLUB_DEBUG
default y
bool "Enable SLUB debugging support" if EMBEDDED
- depends on SLUB
help
SLUB has extensive debug support features. Disabling these can
result in significant savings in code size. This also disables
SLUB sysfs support. /sys/slab will not exist and there will be
no support for cache validation etc.
-choice
- prompt "Choose SLAB allocator"
- default SLUB
- help
- This option allows to select a slab allocator.
-
-config SLAB
- bool "SLAB"
- help
- The regular slab allocator that is established and known to work
- well in all environments. It organizes cache hot objects in
- per cpu and per node queues. SLAB is the default choice for
- a slab allocator.
-
-config SLUB
- bool "SLUB (Unqueued Allocator)"
- help
- SLUB is a slab allocator that minimizes cache line usage
- instead of managing queues of cached objects (SLAB approach).
- Per cpu caching is realized using slabs of objects instead
- of queues of objects. SLUB can use memory efficiently
- and has enhanced diagnostics.
-
-endchoice
-
config PROC_SMAPS
default y
bool "Enable /proc/pid/smaps support" if EMBEDDED && PROC_FS && MMU
Index: linux-2.6.22-rc6-mm1/mm/Makefile
===================================================================
--- linux-2.6.22-rc6-mm1.orig/mm/Makefile 2007-07-05 23:29:47.000000000 -0700
+++ linux-2.6.22-rc6-mm1/mm/Makefile 2007-07-05 23:30:07.000000000 -0700
@@ -11,7 +11,7 @@ obj-y := bootmem.o filemap.o mempool.o
page_alloc.o page-writeback.o pdflush.o \
readahead.o swap.o truncate.o vmscan.o \
prio_tree.o util.o mmzone.o vmstat.o backing-dev.o \
- $(mmu-y)
+ slub.o $(mmu-y)
obj-$(CONFIG_BOUNCE) += bounce.o
obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o thrash.o
@@ -22,8 +22,6 @@ obj-$(CONFIG_SPARSEMEM) += sparse.o
obj-$(CONFIG_SHMEM) += shmem.o
obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o
obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o
-obj-$(CONFIG_SLAB) += slab.o
-obj-$(CONFIG_SLUB) += slub.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
obj-$(CONFIG_FS_XIP) += filemap_xip.o
obj-$(CONFIG_MIGRATION) += migrate.o
Index: linux-2.6.22-rc6-mm1/mm/slab.c
===================================================================
--- linux-2.6.22-rc6-mm1.orig/mm/slab.c 2007-07-05 23:30:53.000000000 -0700
+++ /dev/null 1970-01-01 00:00:00.000000000 +0000
@@ -1,4448 +0,0 @@
-/*
- * linux/mm/slab.c
- * Written by Mark Hemment, 1996/97.
- * ([email protected])
- *
- * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
- *
- * Major cleanup, different bufctl logic, per-cpu arrays
- * (c) 2000 Manfred Spraul
- *
- * Cleanup, make the head arrays unconditional, preparation for NUMA
- * (c) 2002 Manfred Spraul
- *
- * An implementation of the Slab Allocator as described in outline in;
- * UNIX Internals: The New Frontiers by Uresh Vahalia
- * Pub: Prentice Hall ISBN 0-13-101908-2
- * or with a little more detail in;
- * The Slab Allocator: An Object-Caching Kernel Memory Allocator
- * Jeff Bonwick (Sun Microsystems).
- * Presented at: USENIX Summer 1994 Technical Conference
- *
- * The memory is organized in caches, one cache for each object type.
- * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
- * Each cache consists out of many slabs (they are small (usually one
- * page long) and always contiguous), and each slab contains multiple
- * initialized objects.
- *
- * This means, that your constructor is used only for newly allocated
- * slabs and you must pass objects with the same intializations to
- * kmem_cache_free.
- *
- * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
- * normal). If you need a special memory type, then must create a new
- * cache for that memory type.
- *
- * In order to reduce fragmentation, the slabs are sorted in 3 groups:
- * full slabs with 0 free objects
- * partial slabs
- * empty slabs with no allocated objects
- *
- * If partial slabs exist, then new allocations come from these slabs,
- * otherwise from empty slabs or new slabs are allocated.
- *
- * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
- * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
- *
- * Each cache has a short per-cpu head array, most allocs
- * and frees go into that array, and if that array overflows, then 1/2
- * of the entries in the array are given back into the global cache.
- * The head array is strictly LIFO and should improve the cache hit rates.
- * On SMP, it additionally reduces the spinlock operations.
- *
- * The c_cpuarray may not be read with enabled local interrupts -
- * it's changed with a smp_call_function().
- *
- * SMP synchronization:
- * constructors and destructors are called without any locking.
- * Several members in struct kmem_cache and struct slab never change, they
- * are accessed without any locking.
- * The per-cpu arrays are never accessed from the wrong cpu, no locking,
- * and local interrupts are disabled so slab code is preempt-safe.
- * The non-constant members are protected with a per-cache irq spinlock.
- *
- * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
- * in 2000 - many ideas in the current implementation are derived from
- * his patch.
- *
- * Further notes from the original documentation:
- *
- * 11 April '97. Started multi-threading - markhe
- * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
- * The sem is only needed when accessing/extending the cache-chain, which
- * can never happen inside an interrupt (kmem_cache_create(),
- * kmem_cache_shrink() and kmem_cache_reap()).
- *
- * At present, each engine can be growing a cache. This should be blocked.
- *
- * 15 March 2005. NUMA slab allocator.
- * Shai Fultheim <[email protected]>.
- * Shobhit Dayal <[email protected]>
- * Alok N Kataria <[email protected]>
- * Christoph Lameter <[email protected]>
- *
- * Modified the slab allocator to be node aware on NUMA systems.
- * Each node has its own list of partial, free and full slabs.
- * All object allocations for a node occur from node specific slab lists.
- */
-
-#include <linux/slab.h>
-#include <linux/mm.h>
-#include <linux/poison.h>
-#include <linux/swap.h>
-#include <linux/cache.h>
-#include <linux/interrupt.h>
-#include <linux/init.h>
-#include <linux/compiler.h>
-#include <linux/cpuset.h>
-#include <linux/seq_file.h>
-#include <linux/notifier.h>
-#include <linux/kallsyms.h>
-#include <linux/cpu.h>
-#include <linux/sysctl.h>
-#include <linux/module.h>
-#include <linux/rcupdate.h>
-#include <linux/string.h>
-#include <linux/uaccess.h>
-#include <linux/nodemask.h>
-#include <linux/mempolicy.h>
-#include <linux/mutex.h>
-#include <linux/fault-inject.h>
-#include <linux/rtmutex.h>
-#include <linux/reciprocal_div.h>
-
-#include <asm/cacheflush.h>
-#include <asm/tlbflush.h>
-#include <asm/page.h>
-
-/*
- * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * STATS - 1 to collect stats for /proc/slabinfo.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
- */
-
-#ifdef CONFIG_DEBUG_SLAB
-#define DEBUG 1
-#define STATS 1
-#define FORCED_DEBUG 1
-#else
-#define DEBUG 0
-#define STATS 0
-#define FORCED_DEBUG 0
-#endif
-
-/* Shouldn't this be in a header file somewhere? */
-#define BYTES_PER_WORD sizeof(void *)
-
-#ifndef cache_line_size
-#define cache_line_size() L1_CACHE_BYTES
-#endif
-
-#ifndef ARCH_KMALLOC_MINALIGN
-/*
- * Enforce a minimum alignment for the kmalloc caches.
- * Usually, the kmalloc caches are cache_line_size() aligned, except when
- * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
- * Some archs want to perform DMA into kmalloc caches and need a guaranteed
- * alignment larger than the alignment of a 64-bit integer.
- * ARCH_KMALLOC_MINALIGN allows that.
- * Note that increasing this value may disable some debug features.
- */
-#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
-#endif
-
-#ifndef ARCH_SLAB_MINALIGN
-/*
- * Enforce a minimum alignment for all caches.
- * Intended for archs that get misalignment faults even for BYTES_PER_WORD
- * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
- * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
- * some debug features.
- */
-#define ARCH_SLAB_MINALIGN 0
-#endif
-
-#ifndef ARCH_KMALLOC_FLAGS
-#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
-#endif
-
-/* Legal flag mask for kmem_cache_create(). */
-#if DEBUG
-# define CREATE_MASK (SLAB_RED_ZONE | \
- SLAB_POISON | SLAB_HWCACHE_ALIGN | \
- SLAB_CACHE_DMA | \
- SLAB_STORE_USER | \
- SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
-#else
-# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
- SLAB_CACHE_DMA | \
- SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
- SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
-#endif
-
-/*
- * kmem_bufctl_t:
- *
- * Bufctl's are used for linking objs within a slab
- * linked offsets.
- *
- * This implementation relies on "struct page" for locating the cache &
- * slab an object belongs to.
- * This allows the bufctl structure to be small (one int), but limits
- * the number of objects a slab (not a cache) can contain when off-slab
- * bufctls are used. The limit is the size of the largest general cache
- * that does not use off-slab slabs.
- * For 32bit archs with 4 kB pages, is this 56.
- * This is not serious, as it is only for large objects, when it is unwise
- * to have too many per slab.
- * Note: This limit can be raised by introducing a general cache whose size
- * is less than 512 (PAGE_SIZE<<3), but greater than 256.
- */
-
-typedef unsigned int kmem_bufctl_t;
-#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
-#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
-#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
-#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
-
-/*
- * struct slab
- *
- * Manages the objs in a slab. Placed either at the beginning of mem allocated
- * for a slab, or allocated from an general cache.
- * Slabs are chained into three list: fully used, partial, fully free slabs.
- */
-struct slab {
- struct list_head list;
- unsigned long colouroff;
- void *s_mem; /* including colour offset */
- unsigned int inuse; /* num of objs active in slab */
- kmem_bufctl_t free;
- unsigned short nodeid;
-};
-
-/*
- * struct slab_rcu
- *
- * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
- * arrange for kmem_freepages to be called via RCU. This is useful if
- * we need to approach a kernel structure obliquely, from its address
- * obtained without the usual locking. We can lock the structure to
- * stabilize it and check it's still at the given address, only if we
- * can be sure that the memory has not been meanwhile reused for some
- * other kind of object (which our subsystem's lock might corrupt).
- *
- * rcu_read_lock before reading the address, then rcu_read_unlock after
- * taking the spinlock within the structure expected at that address.
- *
- * We assume struct slab_rcu can overlay struct slab when destroying.
- */
-struct slab_rcu {
- struct rcu_head head;
- struct kmem_cache *cachep;
- void *addr;
-};
-
-/*
- * struct array_cache
- *
- * Purpose:
- * - LIFO ordering, to hand out cache-warm objects from _alloc
- * - reduce the number of linked list operations
- * - reduce spinlock operations
- *
- * The limit is stored in the per-cpu structure to reduce the data cache
- * footprint.
- *
- */
-struct array_cache {
- unsigned int avail;
- unsigned int limit;
- unsigned int batchcount;
- unsigned int touched;
- spinlock_t lock;
- void *entry[0]; /*
- * Must have this definition in here for the proper
- * alignment of array_cache. Also simplifies accessing
- * the entries.
- * [0] is for gcc 2.95. It should really be [].
- */
-};
-
-/*
- * bootstrap: The caches do not work without cpuarrays anymore, but the
- * cpuarrays are allocated from the generic caches...
- */
-#define BOOT_CPUCACHE_ENTRIES 1
-struct arraycache_init {
- struct array_cache cache;
- void *entries[BOOT_CPUCACHE_ENTRIES];
-};
-
-/*
- * The slab lists for all objects.
- */
-struct kmem_list3 {
- struct list_head slabs_partial; /* partial list first, better asm code */
- struct list_head slabs_full;
- struct list_head slabs_free;
- unsigned long free_objects;
- unsigned int free_limit;
- unsigned int colour_next; /* Per-node cache coloring */
- spinlock_t list_lock;
- struct array_cache *shared; /* shared per node */
- struct array_cache **alien; /* on other nodes */
- unsigned long next_reap; /* updated without locking */
- int free_touched; /* updated without locking */
-};
-
-/*
- * Need this for bootstrapping a per node allocator.
- */
-#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
-struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
-#define CACHE_CACHE 0
-#define SIZE_AC 1
-#define SIZE_L3 (1 + MAX_NUMNODES)
-
-static int drain_freelist(struct kmem_cache *cache,
- struct kmem_list3 *l3, int tofree);
-static void free_block(struct kmem_cache *cachep, void **objpp, int len,
- int node);
-static int enable_cpucache(struct kmem_cache *cachep);
-static void cache_reap(struct work_struct *unused);
-
-/*
- * This function must be completely optimized away if a constant is passed to
- * it. Mostly the same as what is in linux/slab.h except it returns an index.
- */
-static __always_inline int index_of(const size_t size)
-{
- extern void __bad_size(void);
-
- if (__builtin_constant_p(size)) {
- int i = 0;
-
-#define CACHE(x) \
- if (size <=x) \
- return i; \
- else \
- i++;
-#include "linux/kmalloc_sizes.h"
-#undef CACHE
- __bad_size();
- } else
- __bad_size();
- return 0;
-}
-
-static int slab_early_init = 1;
-
-#define INDEX_AC index_of(sizeof(struct arraycache_init))
-#define INDEX_L3 index_of(sizeof(struct kmem_list3))
-
-static void kmem_list3_init(struct kmem_list3 *parent)
-{
- INIT_LIST_HEAD(&parent->slabs_full);
- INIT_LIST_HEAD(&parent->slabs_partial);
- INIT_LIST_HEAD(&parent->slabs_free);
- parent->shared = NULL;
- parent->alien = NULL;
- parent->colour_next = 0;
- spin_lock_init(&parent->list_lock);
- parent->free_objects = 0;
- parent->free_touched = 0;
-}
-
-#define MAKE_LIST(cachep, listp, slab, nodeid) \
- do { \
- INIT_LIST_HEAD(listp); \
- list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
- } while (0)
-
-#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
- do { \
- MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
- } while (0)
-
-/*
- * struct kmem_cache
- *
- * manages a cache.
- */
-
-struct kmem_cache {
-/* 1) per-cpu data, touched during every alloc/free */
- struct array_cache *array[NR_CPUS];
-/* 2) Cache tunables. Protected by cache_chain_mutex */
- unsigned int batchcount;
- unsigned int limit;
- unsigned int shared;
-
- unsigned int buffer_size;
- u32 reciprocal_buffer_size;
-/* 3) touched by every alloc & free from the backend */
-
- unsigned int flags; /* constant flags */
- unsigned int num; /* # of objs per slab */
-
-/* 4) cache_grow/shrink */
- /* order of pgs per slab (2^n) */
- unsigned int gfporder;
-
- /* force GFP flags, e.g. GFP_DMA */
- gfp_t gfpflags;
-
- size_t colour; /* cache colouring range */
- unsigned int colour_off; /* colour offset */
- struct kmem_cache *slabp_cache;
- unsigned int slab_size;
- unsigned int dflags; /* dynamic flags */
-
- /* constructor func */
- void (*ctor) (void *, struct kmem_cache *, unsigned long);
-
-/* 5) cache creation/removal */
- const char *name;
- struct list_head next;
-
-/* 6) statistics */
-#if STATS
- unsigned long num_active;
- unsigned long num_allocations;
- unsigned long high_mark;
- unsigned long grown;
- unsigned long reaped;
- unsigned long errors;
- unsigned long max_freeable;
- unsigned long node_allocs;
- unsigned long node_frees;
- unsigned long node_overflow;
- atomic_t allochit;
- atomic_t allocmiss;
- atomic_t freehit;
- atomic_t freemiss;
-#endif
-#if DEBUG
- /*
- * If debugging is enabled, then the allocator can add additional
- * fields and/or padding to every object. buffer_size contains the total
- * object size including these internal fields, the following two
- * variables contain the offset to the user object and its size.
- */
- int obj_offset;
- int obj_size;
-#endif
- /*
- * We put nodelists[] at the end of kmem_cache, because we want to size
- * this array to nr_node_ids slots instead of MAX_NUMNODES
- * (see kmem_cache_init())
- * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
- * is statically defined, so we reserve the max number of nodes.
- */
- struct kmem_list3 *nodelists[MAX_NUMNODES];
- /*
- * Do not add fields after nodelists[]
- */
-};
-
-#define CFLGS_OFF_SLAB (0x80000000UL)
-#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
-
-#define BATCHREFILL_LIMIT 16
-/*
- * Optimization question: fewer reaps means less probability for unnessary
- * cpucache drain/refill cycles.
- *
- * OTOH the cpuarrays can contain lots of objects,
- * which could lock up otherwise freeable slabs.
- */
-#define REAPTIMEOUT_CPUC (2*HZ)
-#define REAPTIMEOUT_LIST3 (4*HZ)
-
-#if STATS
-#define STATS_INC_ACTIVE(x) ((x)->num_active++)
-#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
-#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
-#define STATS_INC_GROWN(x) ((x)->grown++)
-#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
-#define STATS_SET_HIGH(x) \
- do { \
- if ((x)->num_active > (x)->high_mark) \
- (x)->high_mark = (x)->num_active; \
- } while (0)
-#define STATS_INC_ERR(x) ((x)->errors++)
-#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
-#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
-#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
-#define STATS_SET_FREEABLE(x, i) \
- do { \
- if ((x)->max_freeable < i) \
- (x)->max_freeable = i; \
- } while (0)
-#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
-#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
-#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
-#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
-#else
-#define STATS_INC_ACTIVE(x) do { } while (0)
-#define STATS_DEC_ACTIVE(x) do { } while (0)
-#define STATS_INC_ALLOCED(x) do { } while (0)
-#define STATS_INC_GROWN(x) do { } while (0)
-#define STATS_ADD_REAPED(x,y) do { } while (0)
-#define STATS_SET_HIGH(x) do { } while (0)
-#define STATS_INC_ERR(x) do { } while (0)
-#define STATS_INC_NODEALLOCS(x) do { } while (0)
-#define STATS_INC_NODEFREES(x) do { } while (0)
-#define STATS_INC_ACOVERFLOW(x) do { } while (0)
-#define STATS_SET_FREEABLE(x, i) do { } while (0)
-#define STATS_INC_ALLOCHIT(x) do { } while (0)
-#define STATS_INC_ALLOCMISS(x) do { } while (0)
-#define STATS_INC_FREEHIT(x) do { } while (0)
-#define STATS_INC_FREEMISS(x) do { } while (0)
-#endif
-
-#if DEBUG
-
-/*
- * memory layout of objects:
- * 0 : objp
- * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
- * the end of an object is aligned with the end of the real
- * allocation. Catches writes behind the end of the allocation.
- * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
- * redzone word.
- * cachep->obj_offset: The real object.
- * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
- * [BYTES_PER_WORD long]
- */
-static int obj_offset(struct kmem_cache *cachep)
-{
- return cachep->obj_offset;
-}
-
-static int obj_size(struct kmem_cache *cachep)
-{
- return cachep->obj_size;
-}
-
-static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
-{
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- return (unsigned long long*) (objp + obj_offset(cachep) -
- sizeof(unsigned long long));
-}
-
-static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
-{
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- if (cachep->flags & SLAB_STORE_USER)
- return (unsigned long long *)(objp + cachep->buffer_size -
- sizeof(unsigned long long) -
- BYTES_PER_WORD);
- return (unsigned long long *) (objp + cachep->buffer_size -
- sizeof(unsigned long long));
-}
-
-static void **dbg_userword(struct kmem_cache *cachep, void *objp)
-{
- BUG_ON(!(cachep->flags & SLAB_STORE_USER));
- return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
-}
-
-#else
-
-#define obj_offset(x) 0
-#define obj_size(cachep) (cachep->buffer_size)
-#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
-#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
-#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
-
-#endif
-
-/*
- * Do not go above this order unless 0 objects fit into the slab.
- */
-#define BREAK_GFP_ORDER_HI 1
-#define BREAK_GFP_ORDER_LO 0
-static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
-
-/*
- * Functions for storing/retrieving the cachep and or slab from the page
- * allocator. These are used to find the slab an obj belongs to. With kfree(),
- * these are used to find the cache which an obj belongs to.
- */
-static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
-{
- page->lru.next = (struct list_head *)cache;
-}
-
-static inline struct kmem_cache *page_get_cache(struct page *page)
-{
- page = compound_head(page);
- BUG_ON(!PageSlab(page));
- return (struct kmem_cache *)page->lru.next;
-}
-
-static inline void page_set_slab(struct page *page, struct slab *slab)
-{
- page->lru.prev = (struct list_head *)slab;
-}
-
-static inline struct slab *page_get_slab(struct page *page)
-{
- BUG_ON(!PageSlab(page));
- return (struct slab *)page->lru.prev;
-}
-
-static inline struct kmem_cache *virt_to_cache(const void *obj)
-{
- struct page *page = virt_to_head_page(obj);
- return page_get_cache(page);
-}
-
-static inline struct slab *virt_to_slab(const void *obj)
-{
- struct page *page = virt_to_head_page(obj);
- return page_get_slab(page);
-}
-
-static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
- unsigned int idx)
-{
- return slab->s_mem + cache->buffer_size * idx;
-}
-
-/*
- * We want to avoid an expensive divide : (offset / cache->buffer_size)
- * Using the fact that buffer_size is a constant for a particular cache,
- * we can replace (offset / cache->buffer_size) by
- * reciprocal_divide(offset, cache->reciprocal_buffer_size)
- */
-static inline unsigned int obj_to_index(const struct kmem_cache *cache,
- const struct slab *slab, void *obj)
-{
- u32 offset = (obj - slab->s_mem);
- return reciprocal_divide(offset, cache->reciprocal_buffer_size);
-}
-
-/*
- * These are the default caches for kmalloc. Custom caches can have other sizes.
- */
-struct cache_sizes malloc_sizes[] = {
-#define CACHE(x) { .cs_size = (x) },
-#include <linux/kmalloc_sizes.h>
- CACHE(ULONG_MAX)
-#undef CACHE
-};
-EXPORT_SYMBOL(malloc_sizes);
-
-/* Must match cache_sizes above. Out of line to keep cache footprint low. */
-struct cache_names {
- char *name;
- char *name_dma;
-};
-
-static struct cache_names __initdata cache_names[] = {
-#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
-#include <linux/kmalloc_sizes.h>
- {NULL,}
-#undef CACHE
-};
-
-static struct arraycache_init initarray_cache __initdata =
- { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
-static struct arraycache_init initarray_generic =
- { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
-
-/* internal cache of cache description objs */
-static struct kmem_cache cache_cache = {
- .batchcount = 1,
- .limit = BOOT_CPUCACHE_ENTRIES,
- .shared = 1,
- .buffer_size = sizeof(struct kmem_cache),
- .name = "kmem_cache",
-};
-
-#define BAD_ALIEN_MAGIC 0x01020304ul
-
-#ifdef CONFIG_LOCKDEP
-
-/*
- * Slab sometimes uses the kmalloc slabs to store the slab headers
- * for other slabs "off slab".
- * The locking for this is tricky in that it nests within the locks
- * of all other slabs in a few places; to deal with this special
- * locking we put on-slab caches into a separate lock-class.
- *
- * We set lock class for alien array caches which are up during init.
- * The lock annotation will be lost if all cpus of a node goes down and
- * then comes back up during hotplug
- */
-static struct lock_class_key on_slab_l3_key;
-static struct lock_class_key on_slab_alc_key;
-
-static inline void init_lock_keys(void)
-
-{
- int q;
- struct cache_sizes *s = malloc_sizes;
-
- while (s->cs_size != ULONG_MAX) {
- for_each_node(q) {
- struct array_cache **alc;
- int r;
- struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
- if (!l3 || OFF_SLAB(s->cs_cachep))
- continue;
- lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
- alc = l3->alien;
- /*
- * FIXME: This check for BAD_ALIEN_MAGIC
- * should go away when common slab code is taught to
- * work even without alien caches.
- * Currently, non NUMA code returns BAD_ALIEN_MAGIC
- * for alloc_alien_cache,
- */
- if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
- continue;
- for_each_node(r) {
- if (alc[r])
- lockdep_set_class(&alc[r]->lock,
- &on_slab_alc_key);
- }
- }
- s++;
- }
-}
-#else
-static inline void init_lock_keys(void)
-{
-}
-#endif
-
-/*
- * 1. Guard access to the cache-chain.
- * 2. Protect sanity of cpu_online_map against cpu hotplug events
- */
-static DEFINE_MUTEX(cache_chain_mutex);
-static struct list_head cache_chain;
-
-/*
- * chicken and egg problem: delay the per-cpu array allocation
- * until the general caches are up.
- */
-static enum {
- NONE,
- PARTIAL_AC,
- PARTIAL_L3,
- FULL
-} g_cpucache_up;
-
-/*
- * used by boot code to determine if it can use slab based allocator
- */
-int slab_is_available(void)
-{
- return g_cpucache_up == FULL;
-}
-
-static DEFINE_PER_CPU(struct delayed_work, reap_work);
-
-static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
-{
- return cachep->array[smp_processor_id()];
-}
-
-static inline struct kmem_cache *__find_general_cachep(size_t size,
- gfp_t gfpflags)
-{
- struct cache_sizes *csizep = malloc_sizes;
-
-#if DEBUG
- /* This happens if someone tries to call
- * kmem_cache_create(), or __kmalloc(), before
- * the generic caches are initialized.
- */
- BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
-#endif
- if (!size)
- return ZERO_SIZE_PTR;
-
- while (size > csizep->cs_size)
- csizep++;
-
- /*
- * Really subtle: The last entry with cs->cs_size==ULONG_MAX
- * has cs_{dma,}cachep==NULL. Thus no special case
- * for large kmalloc calls required.
- */
-#ifdef CONFIG_ZONE_DMA
- if (unlikely(gfpflags & GFP_DMA))
- return csizep->cs_dmacachep;
-#endif
- return csizep->cs_cachep;
-}
-
-static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
-{
- return __find_general_cachep(size, gfpflags);
-}
-
-static size_t slab_mgmt_size(size_t nr_objs, size_t align)
-{
- return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
-}
-
-/*
- * Calculate the number of objects and left-over bytes for a given buffer size.
- */
-static void cache_estimate(unsigned long gfporder, size_t buffer_size,
- size_t align, int flags, size_t *left_over,
- unsigned int *num)
-{
- int nr_objs;
- size_t mgmt_size;
- size_t slab_size = PAGE_SIZE << gfporder;
-
- /*
- * The slab management structure can be either off the slab or
- * on it. For the latter case, the memory allocated for a
- * slab is used for:
- *
- * - The struct slab
- * - One kmem_bufctl_t for each object
- * - Padding to respect alignment of @align
- * - @buffer_size bytes for each object
- *
- * If the slab management structure is off the slab, then the
- * alignment will already be calculated into the size. Because
- * the slabs are all pages aligned, the objects will be at the
- * correct alignment when allocated.
- */
- if (flags & CFLGS_OFF_SLAB) {
- mgmt_size = 0;
- nr_objs = slab_size / buffer_size;
-
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
- } else {
- /*
- * Ignore padding for the initial guess. The padding
- * is at most @align-1 bytes, and @buffer_size is at
- * least @align. In the worst case, this result will
- * be one greater than the number of objects that fit
- * into the memory allocation when taking the padding
- * into account.
- */
- nr_objs = (slab_size - sizeof(struct slab)) /
- (buffer_size + sizeof(kmem_bufctl_t));
-
- /*
- * This calculated number will be either the right
- * amount, or one greater than what we want.
- */
- if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
- > slab_size)
- nr_objs--;
-
- if (nr_objs > SLAB_LIMIT)
- nr_objs = SLAB_LIMIT;
-
- mgmt_size = slab_mgmt_size(nr_objs, align);
- }
- *num = nr_objs;
- *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
-}
-
-#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
-
-static void __slab_error(const char *function, struct kmem_cache *cachep,
- char *msg)
-{
- printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
- function, cachep->name, msg);
- dump_stack();
-}
-
-/*
- * By default on NUMA we use alien caches to stage the freeing of
- * objects allocated from other nodes. This causes massive memory
- * inefficiencies when using fake NUMA setup to split memory into a
- * large number of small nodes, so it can be disabled on the command
- * line
- */
-
-static int use_alien_caches __read_mostly = 1;
-static int __init noaliencache_setup(char *s)
-{
- use_alien_caches = 0;
- return 1;
-}
-__setup("noaliencache", noaliencache_setup);
-
-#ifdef CONFIG_NUMA
-/*
- * Special reaping functions for NUMA systems called from cache_reap().
- * These take care of doing round robin flushing of alien caches (containing
- * objects freed on different nodes from which they were allocated) and the
- * flushing of remote pcps by calling drain_node_pages.
- */
-static DEFINE_PER_CPU(unsigned long, reap_node);
-
-static void init_reap_node(int cpu)
-{
- int node;
-
- node = next_node(cpu_to_node(cpu), node_online_map);
- if (node == MAX_NUMNODES)
- node = first_node(node_online_map);
-
- per_cpu(reap_node, cpu) = node;
-}
-
-static void next_reap_node(void)
-{
- int node = __get_cpu_var(reap_node);
-
- node = next_node(node, node_online_map);
- if (unlikely(node >= MAX_NUMNODES))
- node = first_node(node_online_map);
- __get_cpu_var(reap_node) = node;
-}
-
-#else
-#define init_reap_node(cpu) do { } while (0)
-#define next_reap_node(void) do { } while (0)
-#endif
-
-/*
- * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
- * via the workqueue/eventd.
- * Add the CPU number into the expiration time to minimize the possibility of
- * the CPUs getting into lockstep and contending for the global cache chain
- * lock.
- */
-static void __cpuinit start_cpu_timer(int cpu)
-{
- struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
-
- /*
- * When this gets called from do_initcalls via cpucache_init(),
- * init_workqueues() has already run, so keventd will be setup
- * at that time.
- */
- if (keventd_up() && reap_work->work.func == NULL) {
- init_reap_node(cpu);
- INIT_DELAYED_WORK(reap_work, cache_reap);
- schedule_delayed_work_on(cpu, reap_work,
- __round_jiffies_relative(HZ, cpu));
- }
-}
-
-static struct array_cache *alloc_arraycache(int node, int entries,
- int batchcount)
-{
- int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
- struct array_cache *nc = NULL;
-
- nc = kmalloc_node(memsize, GFP_KERNEL, node);
- if (nc) {
- nc->avail = 0;
- nc->limit = entries;
- nc->batchcount = batchcount;
- nc->touched = 0;
- spin_lock_init(&nc->lock);
- }
- return nc;
-}
-
-/*
- * Transfer objects in one arraycache to another.
- * Locking must be handled by the caller.
- *
- * Return the number of entries transferred.
- */
-static int transfer_objects(struct array_cache *to,
- struct array_cache *from, unsigned int max)
-{
- /* Figure out how many entries to transfer */
- int nr = min(min(from->avail, max), to->limit - to->avail);
-
- if (!nr)
- return 0;
-
- memcpy(to->entry + to->avail, from->entry + from->avail -nr,
- sizeof(void *) *nr);
-
- from->avail -= nr;
- to->avail += nr;
- to->touched = 1;
- return nr;
-}
-
-#ifndef CONFIG_NUMA
-
-#define drain_alien_cache(cachep, alien) do { } while (0)
-#define reap_alien(cachep, l3) do { } while (0)
-
-static inline struct array_cache **alloc_alien_cache(int node, int limit)
-{
- return (struct array_cache **)BAD_ALIEN_MAGIC;
-}
-
-static inline void free_alien_cache(struct array_cache **ac_ptr)
-{
-}
-
-static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
-{
- return 0;
-}
-
-static inline void *alternate_node_alloc(struct kmem_cache *cachep,
- gfp_t flags)
-{
- return NULL;
-}
-
-static inline void *____cache_alloc_node(struct kmem_cache *cachep,
- gfp_t flags, int nodeid)
-{
- return NULL;
-}
-
-#else /* CONFIG_NUMA */
-
-static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
-static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
-
-static struct array_cache **alloc_alien_cache(int node, int limit)
-{
- struct array_cache **ac_ptr;
- int memsize = sizeof(void *) * nr_node_ids;
- int i;
-
- if (limit > 1)
- limit = 12;
- ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
- if (ac_ptr) {
- for_each_node(i) {
- if (i == node || !node_online(i)) {
- ac_ptr[i] = NULL;
- continue;
- }
- ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
- if (!ac_ptr[i]) {
- for (i--; i <= 0; i--)
- kfree(ac_ptr[i]);
- kfree(ac_ptr);
- return NULL;
- }
- }
- }
- return ac_ptr;
-}
-
-static void free_alien_cache(struct array_cache **ac_ptr)
-{
- int i;
-
- if (!ac_ptr)
- return;
- for_each_node(i)
- kfree(ac_ptr[i]);
- kfree(ac_ptr);
-}
-
-static void __drain_alien_cache(struct kmem_cache *cachep,
- struct array_cache *ac, int node)
-{
- struct kmem_list3 *rl3 = cachep->nodelists[node];
-
- if (ac->avail) {
- spin_lock(&rl3->list_lock);
- /*
- * Stuff objects into the remote nodes shared array first.
- * That way we could avoid the overhead of putting the objects
- * into the free lists and getting them back later.
- */
- if (rl3->shared)
- transfer_objects(rl3->shared, ac, ac->limit);
-
- free_block(cachep, ac->entry, ac->avail, node);
- ac->avail = 0;
- spin_unlock(&rl3->list_lock);
- }
-}
-
-/*
- * Called from cache_reap() to regularly drain alien caches round robin.
- */
-static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
-{
- int node = __get_cpu_var(reap_node);
-
- if (l3->alien) {
- struct array_cache *ac = l3->alien[node];
-
- if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
- __drain_alien_cache(cachep, ac, node);
- spin_unlock_irq(&ac->lock);
- }
- }
-}
-
-static void drain_alien_cache(struct kmem_cache *cachep,
- struct array_cache **alien)
-{
- int i = 0;
- struct array_cache *ac;
- unsigned long flags;
-
- for_each_online_node(i) {
- ac = alien[i];
- if (ac) {
- spin_lock_irqsave(&ac->lock, flags);
- __drain_alien_cache(cachep, ac, i);
- spin_unlock_irqrestore(&ac->lock, flags);
- }
- }
-}
-
-static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
-{
- struct slab *slabp = virt_to_slab(objp);
- int nodeid = slabp->nodeid;
- struct kmem_list3 *l3;
- struct array_cache *alien = NULL;
- int node;
-
- node = numa_node_id();
-
- /*
- * Make sure we are not freeing a object from another node to the array
- * cache on this cpu.
- */
- if (likely(slabp->nodeid == node))
- return 0;
-
- l3 = cachep->nodelists[node];
- STATS_INC_NODEFREES(cachep);
- if (l3->alien && l3->alien[nodeid]) {
- alien = l3->alien[nodeid];
- spin_lock(&alien->lock);
- if (unlikely(alien->avail == alien->limit)) {
- STATS_INC_ACOVERFLOW(cachep);
- __drain_alien_cache(cachep, alien, nodeid);
- }
- alien->entry[alien->avail++] = objp;
- spin_unlock(&alien->lock);
- } else {
- spin_lock(&(cachep->nodelists[nodeid])->list_lock);
- free_block(cachep, &objp, 1, nodeid);
- spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
- }
- return 1;
-}
-#endif
-
-static int __cpuinit cpuup_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
-{
- long cpu = (long)hcpu;
- struct kmem_cache *cachep;
- struct kmem_list3 *l3 = NULL;
- int node = cpu_to_node(cpu);
- int memsize = sizeof(struct kmem_list3);
-
- switch (action) {
- case CPU_LOCK_ACQUIRE:
- mutex_lock(&cache_chain_mutex);
- break;
- case CPU_UP_PREPARE:
- case CPU_UP_PREPARE_FROZEN:
- /*
- * We need to do this right in the beginning since
- * alloc_arraycache's are going to use this list.
- * kmalloc_node allows us to add the slab to the right
- * kmem_list3 and not this cpu's kmem_list3
- */
-
- list_for_each_entry(cachep, &cache_chain, next) {
- /*
- * Set up the size64 kmemlist for cpu before we can
- * begin anything. Make sure some other cpu on this
- * node has not already allocated this
- */
- if (!cachep->nodelists[node]) {
- l3 = kmalloc_node(memsize, GFP_KERNEL, node);
- if (!l3)
- goto bad;
- kmem_list3_init(l3);
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-
- /*
- * The l3s don't come and go as CPUs come and
- * go. cache_chain_mutex is sufficient
- * protection here.
- */
- cachep->nodelists[node] = l3;
- }
-
- spin_lock_irq(&cachep->nodelists[node]->list_lock);
- cachep->nodelists[node]->free_limit =
- (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- spin_unlock_irq(&cachep->nodelists[node]->list_lock);
- }
-
- /*
- * Now we can go ahead with allocating the shared arrays and
- * array caches
- */
- list_for_each_entry(cachep, &cache_chain, next) {
- struct array_cache *nc;
- struct array_cache *shared = NULL;
- struct array_cache **alien = NULL;
-
- nc = alloc_arraycache(node, cachep->limit,
- cachep->batchcount);
- if (!nc)
- goto bad;
- if (cachep->shared) {
- shared = alloc_arraycache(node,
- cachep->shared * cachep->batchcount,
- 0xbaadf00d);
- if (!shared)
- goto bad;
- }
- if (use_alien_caches) {
- alien = alloc_alien_cache(node, cachep->limit);
- if (!alien)
- goto bad;
- }
- cachep->array[cpu] = nc;
- l3 = cachep->nodelists[node];
- BUG_ON(!l3);
-
- spin_lock_irq(&l3->list_lock);
- if (!l3->shared) {
- /*
- * We are serialised from CPU_DEAD or
- * CPU_UP_CANCELLED by the cpucontrol lock
- */
- l3->shared = shared;
- shared = NULL;
- }
-#ifdef CONFIG_NUMA
- if (!l3->alien) {
- l3->alien = alien;
- alien = NULL;
- }
-#endif
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- free_alien_cache(alien);
- }
- break;
- case CPU_ONLINE:
- case CPU_ONLINE_FROZEN:
- start_cpu_timer(cpu);
- break;
-#ifdef CONFIG_HOTPLUG_CPU
- case CPU_DOWN_PREPARE:
- case CPU_DOWN_PREPARE_FROZEN:
- /*
- * Shutdown cache reaper. Note that the cache_chain_mutex is
- * held so that if cache_reap() is invoked it cannot do
- * anything expensive but will only modify reap_work
- * and reschedule the timer.
- */
- cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
- /* Now the cache_reaper is guaranteed to be not running. */
- per_cpu(reap_work, cpu).work.func = NULL;
- break;
- case CPU_DOWN_FAILED:
- case CPU_DOWN_FAILED_FROZEN:
- start_cpu_timer(cpu);
- break;
- case CPU_DEAD:
- case CPU_DEAD_FROZEN:
- /*
- * Even if all the cpus of a node are down, we don't free the
- * kmem_list3 of any cache. This to avoid a race between
- * cpu_down, and a kmalloc allocation from another cpu for
- * memory from the node of the cpu going down. The list3
- * structure is usually allocated from kmem_cache_create() and
- * gets destroyed at kmem_cache_destroy().
- */
- /* fall thru */
-#endif
- case CPU_UP_CANCELED:
- case CPU_UP_CANCELED_FROZEN:
- list_for_each_entry(cachep, &cache_chain, next) {
- struct array_cache *nc;
- struct array_cache *shared;
- struct array_cache **alien;
- cpumask_t mask;
-
- mask = node_to_cpumask(node);
- /* cpu is dead; no one can alloc from it. */
- nc = cachep->array[cpu];
- cachep->array[cpu] = NULL;
- l3 = cachep->nodelists[node];
-
- if (!l3)
- goto free_array_cache;
-
- spin_lock_irq(&l3->list_lock);
-
- /* Free limit for this kmem_list3 */
- l3->free_limit -= cachep->batchcount;
- if (nc)
- free_block(cachep, nc->entry, nc->avail, node);
-
- if (!cpus_empty(mask)) {
- spin_unlock_irq(&l3->list_lock);
- goto free_array_cache;
- }
-
- shared = l3->shared;
- if (shared) {
- free_block(cachep, shared->entry,
- shared->avail, node);
- l3->shared = NULL;
- }
-
- alien = l3->alien;
- l3->alien = NULL;
-
- spin_unlock_irq(&l3->list_lock);
-
- kfree(shared);
- if (alien) {
- drain_alien_cache(cachep, alien);
- free_alien_cache(alien);
- }
-free_array_cache:
- kfree(nc);
- }
- /*
- * In the previous loop, all the objects were freed to
- * the respective cache's slabs, now we can go ahead and
- * shrink each nodelist to its limit.
- */
- list_for_each_entry(cachep, &cache_chain, next) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
- drain_freelist(cachep, l3, l3->free_objects);
- }
- break;
- case CPU_LOCK_RELEASE:
- mutex_unlock(&cache_chain_mutex);
- break;
- }
- return NOTIFY_OK;
-bad:
- return NOTIFY_BAD;
-}
-
-static struct notifier_block __cpuinitdata cpucache_notifier = {
- &cpuup_callback, NULL, 0
-};
-
-/*
- * swap the static kmem_list3 with kmalloced memory
- */
-static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
- int nodeid)
-{
- struct kmem_list3 *ptr;
-
- ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
- BUG_ON(!ptr);
-
- local_irq_disable();
- memcpy(ptr, list, sizeof(struct kmem_list3));
- /*
- * Do not assume that spinlocks can be initialized via memcpy:
- */
- spin_lock_init(&ptr->list_lock);
-
- MAKE_ALL_LISTS(cachep, ptr, nodeid);
- cachep->nodelists[nodeid] = ptr;
- local_irq_enable();
-}
-
-/*
- * Initialisation. Called after the page allocator have been initialised and
- * before smp_init().
- */
-void __init kmem_cache_init(void)
-{
- size_t left_over;
- struct cache_sizes *sizes;
- struct cache_names *names;
- int i;
- int order;
- int node;
-
- if (num_possible_nodes() == 1)
- use_alien_caches = 0;
-
- for (i = 0; i < NUM_INIT_LISTS; i++) {
- kmem_list3_init(&initkmem_list3[i]);
- if (i < MAX_NUMNODES)
- cache_cache.nodelists[i] = NULL;
- }
-
- /*
- * Fragmentation resistance on low memory - only use bigger
- * page orders on machines with more than 32MB of memory.
- */
- if (num_physpages > (32 << 20) >> PAGE_SHIFT)
- slab_break_gfp_order = BREAK_GFP_ORDER_HI;
-
- /* Bootstrap is tricky, because several objects are allocated
- * from caches that do not exist yet:
- * 1) initialize the cache_cache cache: it contains the struct
- * kmem_cache structures of all caches, except cache_cache itself:
- * cache_cache is statically allocated.
- * Initially an __init data area is used for the head array and the
- * kmem_list3 structures, it's replaced with a kmalloc allocated
- * array at the end of the bootstrap.
- * 2) Create the first kmalloc cache.
- * The struct kmem_cache for the new cache is allocated normally.
- * An __init data area is used for the head array.
- * 3) Create the remaining kmalloc caches, with minimally sized
- * head arrays.
- * 4) Replace the __init data head arrays for cache_cache and the first
- * kmalloc cache with kmalloc allocated arrays.
- * 5) Replace the __init data for kmem_list3 for cache_cache and
- * the other cache's with kmalloc allocated memory.
- * 6) Resize the head arrays of the kmalloc caches to their final sizes.
- */
-
- node = numa_node_id();
-
- /* 1) create the cache_cache */
- INIT_LIST_HEAD(&cache_chain);
- list_add(&cache_cache.next, &cache_chain);
- cache_cache.colour_off = cache_line_size();
- cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
- cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
-
- /*
- * struct kmem_cache size depends on nr_node_ids, which
- * can be less than MAX_NUMNODES.
- */
- cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
- nr_node_ids * sizeof(struct kmem_list3 *);
-#if DEBUG
- cache_cache.obj_size = cache_cache.buffer_size;
-#endif
- cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
- cache_line_size());
- cache_cache.reciprocal_buffer_size =
- reciprocal_value(cache_cache.buffer_size);
-
- for (order = 0; order < MAX_ORDER; order++) {
- cache_estimate(order, cache_cache.buffer_size,
- cache_line_size(), 0, &left_over, &cache_cache.num);
- if (cache_cache.num)
- break;
- }
- BUG_ON(!cache_cache.num);
- cache_cache.gfporder = order;
- cache_cache.colour = left_over / cache_cache.colour_off;
- cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
- sizeof(struct slab), cache_line_size());
-
- /* 2+3) create the kmalloc caches */
- sizes = malloc_sizes;
- names = cache_names;
-
- /*
- * Initialize the caches that provide memory for the array cache and the
- * kmem_list3 structures first. Without this, further allocations will
- * bug.
- */
-
- sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
- sizes[INDEX_AC].cs_size,
- ARCH_KMALLOC_MINALIGN,
- ARCH_KMALLOC_FLAGS|SLAB_PANIC,
- NULL, NULL);
-
- if (INDEX_AC != INDEX_L3) {
- sizes[INDEX_L3].cs_cachep =
- kmem_cache_create(names[INDEX_L3].name,
- sizes[INDEX_L3].cs_size,
- ARCH_KMALLOC_MINALIGN,
- ARCH_KMALLOC_FLAGS|SLAB_PANIC,
- NULL, NULL);
- }
-
- slab_early_init = 0;
-
- while (sizes->cs_size != ULONG_MAX) {
- /*
- * For performance, all the general caches are L1 aligned.
- * This should be particularly beneficial on SMP boxes, as it
- * eliminates "false sharing".
- * Note for systems short on memory removing the alignment will
- * allow tighter packing of the smaller caches.
- */
- if (!sizes->cs_cachep) {
- sizes->cs_cachep = kmem_cache_create(names->name,
- sizes->cs_size,
- ARCH_KMALLOC_MINALIGN,
- ARCH_KMALLOC_FLAGS|SLAB_PANIC,
- NULL, NULL);
- }
-#ifdef CONFIG_ZONE_DMA
- sizes->cs_dmacachep = kmem_cache_create(
- names->name_dma,
- sizes->cs_size,
- ARCH_KMALLOC_MINALIGN,
- ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
- SLAB_PANIC,
- NULL, NULL);
-#endif
- sizes++;
- names++;
- }
- /* 4) Replace the bootstrap head arrays */
- {
- struct array_cache *ptr;
-
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
-
- local_irq_disable();
- BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
- memcpy(ptr, cpu_cache_get(&cache_cache),
- sizeof(struct arraycache_init));
- /*
- * Do not assume that spinlocks can be initialized via memcpy:
- */
- spin_lock_init(&ptr->lock);
-
- cache_cache.array[smp_processor_id()] = ptr;
- local_irq_enable();
-
- ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
-
- local_irq_disable();
- BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
- != &initarray_generic.cache);
- memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
- sizeof(struct arraycache_init));
- /*
- * Do not assume that spinlocks can be initialized via memcpy:
- */
- spin_lock_init(&ptr->lock);
-
- malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
- ptr;
- local_irq_enable();
- }
- /* 5) Replace the bootstrap kmem_list3's */
- {
- int nid;
-
- /* Replace the static kmem_list3 structures for the boot cpu */
- init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
-
- for_each_online_node(nid) {
- init_list(malloc_sizes[INDEX_AC].cs_cachep,
- &initkmem_list3[SIZE_AC + nid], nid);
-
- if (INDEX_AC != INDEX_L3) {
- init_list(malloc_sizes[INDEX_L3].cs_cachep,
- &initkmem_list3[SIZE_L3 + nid], nid);
- }
- }
- }
-
- /* 6) resize the head arrays to their final sizes */
- {
- struct kmem_cache *cachep;
- mutex_lock(&cache_chain_mutex);
- list_for_each_entry(cachep, &cache_chain, next)
- if (enable_cpucache(cachep))
- BUG();
- mutex_unlock(&cache_chain_mutex);
- }
-
- /* Annotate slab for lockdep -- annotate the malloc caches */
- init_lock_keys();
-
-
- /* Done! */
- g_cpucache_up = FULL;
-
- /*
- * Register a cpu startup notifier callback that initializes
- * cpu_cache_get for all new cpus
- */
- register_cpu_notifier(&cpucache_notifier);
-
- /*
- * The reap timers are started later, with a module init call: That part
- * of the kernel is not yet operational.
- */
-}
-
-static int __init cpucache_init(void)
-{
- int cpu;
-
- /*
- * Register the timers that return unneeded pages to the page allocator
- */
- for_each_online_cpu(cpu)
- start_cpu_timer(cpu);
- return 0;
-}
-__initcall(cpucache_init);
-
-/*
- * Interface to system's page allocator. No need to hold the cache-lock.
- *
- * If we requested dmaable memory, we will get it. Even if we
- * did not request dmaable memory, we might get it, but that
- * would be relatively rare and ignorable.
- */
-static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
-{
- struct page *page;
- int nr_pages;
- int i;
-
-#ifndef CONFIG_MMU
- /*
- * Nommu uses slab's for process anonymous memory allocations, and thus
- * requires __GFP_COMP to properly refcount higher order allocations
- */
- flags |= __GFP_COMP;
-#endif
-
- flags |= cachep->gfpflags;
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- flags |= __GFP_RECLAIMABLE;
-
- page = alloc_pages_node(nodeid, flags, cachep->gfporder);
- if (!page)
- return NULL;
-
- nr_pages = (1 << cachep->gfporder);
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- add_zone_page_state(page_zone(page),
- NR_SLAB_RECLAIMABLE, nr_pages);
- else
- add_zone_page_state(page_zone(page),
- NR_SLAB_UNRECLAIMABLE, nr_pages);
- for (i = 0; i < nr_pages; i++)
- __SetPageSlab(page + i);
- return page_address(page);
-}
-
-/*
- * Interface to system's page release.
- */
-static void kmem_freepages(struct kmem_cache *cachep, void *addr)
-{
- unsigned long i = (1 << cachep->gfporder);
- struct page *page = virt_to_page(addr);
- const unsigned long nr_freed = i;
-
- if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
- sub_zone_page_state(page_zone(page),
- NR_SLAB_RECLAIMABLE, nr_freed);
- else
- sub_zone_page_state(page_zone(page),
- NR_SLAB_UNRECLAIMABLE, nr_freed);
- while (i--) {
- BUG_ON(!PageSlab(page));
- __ClearPageSlab(page);
- page++;
- }
- if (current->reclaim_state)
- current->reclaim_state->reclaimed_slab += nr_freed;
- free_pages((unsigned long)addr, cachep->gfporder);
-}
-
-static void kmem_rcu_free(struct rcu_head *head)
-{
- struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
- struct kmem_cache *cachep = slab_rcu->cachep;
-
- kmem_freepages(cachep, slab_rcu->addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slab_rcu);
-}
-
-#if DEBUG
-
-#ifdef CONFIG_DEBUG_PAGEALLOC
-static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
- unsigned long caller)
-{
- int size = obj_size(cachep);
-
- addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
-
- if (size < 5 * sizeof(unsigned long))
- return;
-
- *addr++ = 0x12345678;
- *addr++ = caller;
- *addr++ = smp_processor_id();
- size -= 3 * sizeof(unsigned long);
- {
- unsigned long *sptr = &caller;
- unsigned long svalue;
-
- while (!kstack_end(sptr)) {
- svalue = *sptr++;
- if (kernel_text_address(svalue)) {
- *addr++ = svalue;
- size -= sizeof(unsigned long);
- if (size <= sizeof(unsigned long))
- break;
- }
- }
-
- }
- *addr++ = 0x87654321;
-}
-#endif
-
-static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
-{
- int size = obj_size(cachep);
- addr = &((char *)addr)[obj_offset(cachep)];
-
- memset(addr, val, size);
- *(unsigned char *)(addr + size - 1) = POISON_END;
-}
-
-static void dump_line(char *data, int offset, int limit)
-{
- int i;
- unsigned char error = 0;
- int bad_count = 0;
-
- printk(KERN_ERR "%03x:", offset);
- for (i = 0; i < limit; i++) {
- if (data[offset + i] != POISON_FREE) {
- error = data[offset + i];
- bad_count++;
- }
- printk(" %02x", (unsigned char)data[offset + i]);
- }
- printk("\n");
-
- if (bad_count == 1) {
- error ^= POISON_FREE;
- if (!(error & (error - 1))) {
- printk(KERN_ERR "Single bit error detected. Probably "
- "bad RAM.\n");
-#ifdef CONFIG_X86
- printk(KERN_ERR "Run memtest86+ or a similar memory "
- "test tool.\n");
-#else
- printk(KERN_ERR "Run a memory test tool.\n");
-#endif
- }
- }
-}
-#endif
-
-#if DEBUG
-
-static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
-{
- int i, size;
- char *realobj;
-
- if (cachep->flags & SLAB_RED_ZONE) {
- printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
- *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
-
- if (cachep->flags & SLAB_STORE_USER) {
- printk(KERN_ERR "Last user: [<%p>]",
- *dbg_userword(cachep, objp));
- print_symbol("(%s)",
- (unsigned long)*dbg_userword(cachep, objp));
- printk("\n");
- }
- realobj = (char *)objp + obj_offset(cachep);
- size = obj_size(cachep);
- for (i = 0; i < size && lines; i += 16, lines--) {
- int limit;
- limit = 16;
- if (i + limit > size)
- limit = size - i;
- dump_line(realobj, i, limit);
- }
-}
-
-static void check_poison_obj(struct kmem_cache *cachep, void *objp)
-{
- char *realobj;
- int size, i;
- int lines = 0;
-
- realobj = (char *)objp + obj_offset(cachep);
- size = obj_size(cachep);
-
- for (i = 0; i < size; i++) {
- char exp = POISON_FREE;
- if (i == size - 1)
- exp = POISON_END;
- if (realobj[i] != exp) {
- int limit;
- /* Mismatch ! */
- /* Print header */
- if (lines == 0) {
- printk(KERN_ERR
- "Slab corruption: %s start=%p, len=%d\n",
- cachep->name, realobj, size);
- print_objinfo(cachep, objp, 0);
- }
- /* Hexdump the affected line */
- i = (i / 16) * 16;
- limit = 16;
- if (i + limit > size)
- limit = size - i;
- dump_line(realobj, i, limit);
- i += 16;
- lines++;
- /* Limit to 5 lines */
- if (lines > 5)
- break;
- }
- }
- if (lines != 0) {
- /* Print some data about the neighboring objects, if they
- * exist:
- */
- struct slab *slabp = virt_to_slab(objp);
- unsigned int objnr;
-
- objnr = obj_to_index(cachep, slabp, objp);
- if (objnr) {
- objp = index_to_obj(cachep, slabp, objnr - 1);
- realobj = (char *)objp + obj_offset(cachep);
- printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- if (objnr + 1 < cachep->num) {
- objp = index_to_obj(cachep, slabp, objnr + 1);
- realobj = (char *)objp + obj_offset(cachep);
- printk(KERN_ERR "Next obj: start=%p, len=%d\n",
- realobj, size);
- print_objinfo(cachep, objp, 2);
- }
- }
-}
-#endif
-
-#if DEBUG
-/**
- * slab_destroy_objs - destroy a slab and its objects
- * @cachep: cache pointer being destroyed
- * @slabp: slab pointer being destroyed
- *
- * Call the registered destructor for each object in a slab that is being
- * destroyed.
- */
-static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
-{
- int i;
- for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
-
- if (cachep->flags & SLAB_POISON) {
-#ifdef CONFIG_DEBUG_PAGEALLOC
- if (cachep->buffer_size % PAGE_SIZE == 0 &&
- OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 1);
- else
- check_poison_obj(cachep, objp);
-#else
- check_poison_obj(cachep, objp);
-#endif
- }
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "start of a freed object "
- "was overwritten");
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "end of a freed object "
- "was overwritten");
- }
- }
-}
-#else
-static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
-{
-}
-#endif
-
-/**
- * slab_destroy - destroy and release all objects in a slab
- * @cachep: cache pointer being destroyed
- * @slabp: slab pointer being destroyed
- *
- * Destroy all the objs in a slab, and release the mem back to the system.
- * Before calling the slab must have been unlinked from the cache. The
- * cache-lock is not held/needed.
- */
-static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
-{
- void *addr = slabp->s_mem - slabp->colouroff;
-
- slab_destroy_objs(cachep, slabp);
- if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
- struct slab_rcu *slab_rcu;
-
- slab_rcu = (struct slab_rcu *)slabp;
- slab_rcu->cachep = cachep;
- slab_rcu->addr = addr;
- call_rcu(&slab_rcu->head, kmem_rcu_free);
- } else {
- kmem_freepages(cachep, addr);
- if (OFF_SLAB(cachep))
- kmem_cache_free(cachep->slabp_cache, slabp);
- }
-}
-
-/*
- * For setting up all the kmem_list3s for cache whose buffer_size is same as
- * size of kmem_list3.
- */
-static void __init set_up_list3s(struct kmem_cache *cachep, int index)
-{
- int node;
-
- for_each_online_node(node) {
- cachep->nodelists[node] = &initkmem_list3[index + node];
- cachep->nodelists[node]->next_reap = jiffies +
- REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- }
-}
-
-static void __kmem_cache_destroy(struct kmem_cache *cachep)
-{
- int i;
- struct kmem_list3 *l3;
-
- for_each_online_cpu(i)
- kfree(cachep->array[i]);
-
- /* NUMA: free the list3 structures */
- for_each_online_node(i) {
- l3 = cachep->nodelists[i];
- if (l3) {
- kfree(l3->shared);
- free_alien_cache(l3->alien);
- kfree(l3);
- }
- }
- kmem_cache_free(&cache_cache, cachep);
-}
-
-
-/**
- * calculate_slab_order - calculate size (page order) of slabs
- * @cachep: pointer to the cache that is being created
- * @size: size of objects to be created in this cache.
- * @align: required alignment for the objects.
- * @flags: slab allocation flags
- *
- * Also calculates the number of objects per slab.
- *
- * This could be made much more intelligent. For now, try to avoid using
- * high order pages for slabs. When the gfp() functions are more friendly
- * towards high-order requests, this should be changed.
- */
-static size_t calculate_slab_order(struct kmem_cache *cachep,
- size_t size, size_t align, unsigned long flags)
-{
- unsigned long offslab_limit;
- size_t left_over = 0;
- int gfporder;
-
- for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
- unsigned int num;
- size_t remainder;
-
- cache_estimate(gfporder, size, align, flags, &remainder, &num);
- if (!num)
- continue;
-
- if (flags & CFLGS_OFF_SLAB) {
- /*
- * Max number of objs-per-slab for caches which
- * use off-slab slabs. Needed to avoid a possible
- * looping condition in cache_grow().
- */
- offslab_limit = size - sizeof(struct slab);
- offslab_limit /= sizeof(kmem_bufctl_t);
-
- if (num > offslab_limit)
- break;
- }
-
- /* Found something acceptable - save it away */
- cachep->num = num;
- cachep->gfporder = gfporder;
- left_over = remainder;
-
- /*
- * A VFS-reclaimable slab tends to have most allocations
- * as GFP_NOFS and we really don't want to have to be allocating
- * higher-order pages when we are unable to shrink dcache.
- */
- if (flags & SLAB_RECLAIM_ACCOUNT)
- break;
-
- /*
- * Large number of objects is good, but very large slabs are
- * currently bad for the gfp()s.
- */
- if (gfporder >= slab_break_gfp_order)
- break;
-
- /*
- * Acceptable internal fragmentation?
- */
- if (left_over * 8 <= (PAGE_SIZE << gfporder))
- break;
- }
- return left_over;
-}
-
-static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
-{
- if (g_cpucache_up == FULL)
- return enable_cpucache(cachep);
-
- if (g_cpucache_up == NONE) {
- /*
- * Note: the first kmem_cache_create must create the cache
- * that's used by kmalloc(24), otherwise the creation of
- * further caches will BUG().
- */
- cachep->array[smp_processor_id()] = &initarray_generic.cache;
-
- /*
- * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
- * the first cache, then we need to set up all its list3s,
- * otherwise the creation of further caches will BUG().
- */
- set_up_list3s(cachep, SIZE_AC);
- if (INDEX_AC == INDEX_L3)
- g_cpucache_up = PARTIAL_L3;
- else
- g_cpucache_up = PARTIAL_AC;
- } else {
- cachep->array[smp_processor_id()] =
- kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
-
- if (g_cpucache_up == PARTIAL_AC) {
- set_up_list3s(cachep, SIZE_L3);
- g_cpucache_up = PARTIAL_L3;
- } else {
- int node;
- for_each_online_node(node) {
- cachep->nodelists[node] =
- kmalloc_node(sizeof(struct kmem_list3),
- GFP_KERNEL, node);
- BUG_ON(!cachep->nodelists[node]);
- kmem_list3_init(cachep->nodelists[node]);
- }
- }
- }
- cachep->nodelists[numa_node_id()]->next_reap =
- jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
-
- cpu_cache_get(cachep)->avail = 0;
- cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
- cpu_cache_get(cachep)->batchcount = 1;
- cpu_cache_get(cachep)->touched = 0;
- cachep->batchcount = 1;
- cachep->limit = BOOT_CPUCACHE_ENTRIES;
- return 0;
-}
-
-/**
- * kmem_cache_create - Create a cache.
- * @name: A string which is used in /proc/slabinfo to identify this cache.
- * @size: The size of objects to be created in this cache.
- * @align: The required alignment for the objects.
- * @flags: SLAB flags
- * @ctor: A constructor for the objects.
- * @ops: A kmem_cache_ops structure (ignored).
- *
- * Returns a ptr to the cache on success, NULL on failure.
- * Cannot be called within a int, but can be interrupted.
- * The @ctor is run when new pages are allocated by the cache
- * and the @dtor is run before the pages are handed back.
- *
- * @name must be valid until the cache is destroyed. This implies that
- * the module calling this has to destroy the cache before getting unloaded.
- *
- * The flags are
- *
- * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
- * to catch references to uninitialised memory.
- *
- * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
- * for buffer overruns.
- *
- * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
- * cacheline. This can be beneficial if you're counting cycles as closely
- * as davem.
- */
-struct kmem_cache *
-kmem_cache_create (const char *name, size_t size, size_t align,
- unsigned long flags,
- void (*ctor)(void*, struct kmem_cache *, unsigned long),
- const struct kmem_cache_ops *ops)
-{
- size_t left_over, slab_size, ralign;
- struct kmem_cache *cachep = NULL, *pc;
-
- /*
- * Sanity checks... these are all serious usage bugs.
- */
- if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
- size > KMALLOC_MAX_SIZE) {
- printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
- name);
- BUG();
- }
-
- /*
- * We use cache_chain_mutex to ensure a consistent view of
- * cpu_online_map as well. Please see cpuup_callback
- */
- mutex_lock(&cache_chain_mutex);
-
- list_for_each_entry(pc, &cache_chain, next) {
- char tmp;
- int res;
-
- /*
- * This happens when the module gets unloaded and doesn't
- * destroy its slab cache and no-one else reuses the vmalloc
- * area of the module. Print a warning.
- */
- res = probe_kernel_address(pc->name, tmp);
- if (res) {
- printk(KERN_ERR
- "SLAB: cache with size %d has lost its name\n",
- pc->buffer_size);
- continue;
- }
-
- if (!strcmp(pc->name, name)) {
- printk(KERN_ERR
- "kmem_cache_create: duplicate cache %s\n", name);
- dump_stack();
- goto oops;
- }
- }
-
-#if DEBUG
- WARN_ON(strchr(name, ' ')); /* It confuses parsers */
-#if FORCED_DEBUG
- /*
- * Enable redzoning and last user accounting, except for caches with
- * large objects, if the increased size would increase the object size
- * above the next power of two: caches with object sizes just above a
- * power of two have a significant amount of internal fragmentation.
- */
- if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
- flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
- if (!(flags & SLAB_DESTROY_BY_RCU))
- flags |= SLAB_POISON;
-#endif
- if (flags & SLAB_DESTROY_BY_RCU)
- BUG_ON(flags & SLAB_POISON);
-#endif
- /*
- * Always checks flags, a caller might be expecting debug support which
- * isn't available.
- */
- BUG_ON(flags & ~CREATE_MASK);
-
- /*
- * Check that size is in terms of words. This is needed to avoid
- * unaligned accesses for some archs when redzoning is used, and makes
- * sure any on-slab bufctl's are also correctly aligned.
- */
- if (size & (BYTES_PER_WORD - 1)) {
- size += (BYTES_PER_WORD - 1);
- size &= ~(BYTES_PER_WORD - 1);
- }
-
- /* calculate the final buffer alignment: */
-
- /* 1) arch recommendation: can be overridden for debug */
- if (flags & SLAB_HWCACHE_ALIGN) {
- /*
- * Default alignment: as specified by the arch code. Except if
- * an object is really small, then squeeze multiple objects into
- * one cacheline.
- */
- ralign = cache_line_size();
- while (size <= ralign / 2)
- ralign /= 2;
- } else {
- ralign = BYTES_PER_WORD;
- }
-
- /*
- * Redzoning and user store require word alignment. Note this will be
- * overridden by architecture or caller mandated alignment if either
- * is greater than BYTES_PER_WORD.
- */
- if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
- ralign = __alignof__(unsigned long long);
-
- /* 2) arch mandated alignment */
- if (ralign < ARCH_SLAB_MINALIGN) {
- ralign = ARCH_SLAB_MINALIGN;
- }
- /* 3) caller mandated alignment */
- if (ralign < align) {
- ralign = align;
- }
- /* disable debug if necessary */
- if (ralign > __alignof__(unsigned long long))
- flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
- /*
- * 4) Store it.
- */
- align = ralign;
-
- /* Get cache's description obj. */
- cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
- if (!cachep)
- goto oops;
-
-#if DEBUG
- cachep->obj_size = size;
-
- /*
- * Both debugging options require word-alignment which is calculated
- * into align above.
- */
- if (flags & SLAB_RED_ZONE) {
- /* add space for red zone words */
- cachep->obj_offset += sizeof(unsigned long long);
- size += 2 * sizeof(unsigned long long);
- }
- if (flags & SLAB_STORE_USER) {
- /* user store requires one word storage behind the end of
- * the real object.
- */
- size += BYTES_PER_WORD;
- }
-#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
- if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
- && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
- cachep->obj_offset += PAGE_SIZE - size;
- size = PAGE_SIZE;
- }
-#endif
-#endif
-
- /*
- * Determine if the slab management is 'on' or 'off' slab.
- * (bootstrapping cannot cope with offslab caches so don't do
- * it too early on.)
- */
- if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
- /*
- * Size is large, assume best to place the slab management obj
- * off-slab (should allow better packing of objs).
- */
- flags |= CFLGS_OFF_SLAB;
-
- size = ALIGN(size, align);
-
- left_over = calculate_slab_order(cachep, size, align, flags);
-
- if (!cachep->num) {
- printk(KERN_ERR
- "kmem_cache_create: couldn't create cache %s.\n", name);
- kmem_cache_free(&cache_cache, cachep);
- cachep = NULL;
- goto oops;
- }
- slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
- + sizeof(struct slab), align);
-
- /*
- * If the slab has been placed off-slab, and we have enough space then
- * move it on-slab. This is at the expense of any extra colouring.
- */
- if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
- flags &= ~CFLGS_OFF_SLAB;
- left_over -= slab_size;
- }
-
- if (flags & CFLGS_OFF_SLAB) {
- /* really off slab. No need for manual alignment */
- slab_size =
- cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
- }
-
- cachep->colour_off = cache_line_size();
- /* Offset must be a multiple of the alignment. */
- if (cachep->colour_off < align)
- cachep->colour_off = align;
- cachep->colour = left_over / cachep->colour_off;
- cachep->slab_size = slab_size;
- cachep->flags = flags;
- cachep->gfpflags = 0;
- if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
- cachep->gfpflags |= GFP_DMA;
- cachep->buffer_size = size;
- cachep->reciprocal_buffer_size = reciprocal_value(size);
-
- if (flags & CFLGS_OFF_SLAB) {
- cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
- /*
- * This is a possibility for one of the malloc_sizes caches.
- * But since we go off slab only for object size greater than
- * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
- * this should not happen at all.
- * But leave a BUG_ON for some lucky dude.
- */
- BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
- }
- cachep->ctor = ctor;
- cachep->name = name;
-
- if (setup_cpu_cache(cachep)) {
- __kmem_cache_destroy(cachep);
- cachep = NULL;
- goto oops;
- }
-
- /* cache setup completed, link it into the list */
- list_add(&cachep->next, &cache_chain);
-oops:
- if (!cachep && (flags & SLAB_PANIC))
- panic("kmem_cache_create(): failed to create slab `%s'\n",
- name);
- mutex_unlock(&cache_chain_mutex);
- return cachep;
-}
-EXPORT_SYMBOL(kmem_cache_create);
-
-#if DEBUG
-static void check_irq_off(void)
-{
- BUG_ON(!irqs_disabled());
-}
-
-static void check_irq_on(void)
-{
- BUG_ON(irqs_disabled());
-}
-
-static void check_spinlock_acquired(struct kmem_cache *cachep)
-{
-#ifdef CONFIG_SMP
- check_irq_off();
- assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
-#endif
-}
-
-static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
-{
-#ifdef CONFIG_SMP
- check_irq_off();
- assert_spin_locked(&cachep->nodelists[node]->list_lock);
-#endif
-}
-
-#else
-#define check_irq_off() do { } while(0)
-#define check_irq_on() do { } while(0)
-#define check_spinlock_acquired(x) do { } while(0)
-#define check_spinlock_acquired_node(x, y) do { } while(0)
-#endif
-
-static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
- struct array_cache *ac,
- int force, int node);
-
-static void do_drain(void *arg)
-{
- struct kmem_cache *cachep = arg;
- struct array_cache *ac;
- int node = numa_node_id();
-
- check_irq_off();
- ac = cpu_cache_get(cachep);
- spin_lock(&cachep->nodelists[node]->list_lock);
- free_block(cachep, ac->entry, ac->avail, node);
- spin_unlock(&cachep->nodelists[node]->list_lock);
- ac->avail = 0;
-}
-
-static void drain_cpu_caches(struct kmem_cache *cachep)
-{
- struct kmem_list3 *l3;
- int node;
-
- on_each_cpu(do_drain, cachep, 1, 1);
- check_irq_on();
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (l3 && l3->alien)
- drain_alien_cache(cachep, l3->alien);
- }
-
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (l3)
- drain_array(cachep, l3, l3->shared, 1, node);
- }
-}
-
-/*
- * Remove slabs from the list of free slabs.
- * Specify the number of slabs to drain in tofree.
- *
- * Returns the actual number of slabs released.
- */
-static int drain_freelist(struct kmem_cache *cache,
- struct kmem_list3 *l3, int tofree)
-{
- struct list_head *p;
- int nr_freed;
- struct slab *slabp;
-
- nr_freed = 0;
- while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
-
- spin_lock_irq(&l3->list_lock);
- p = l3->slabs_free.prev;
- if (p == &l3->slabs_free) {
- spin_unlock_irq(&l3->list_lock);
- goto out;
- }
-
- slabp = list_entry(p, struct slab, list);
-#if DEBUG
- BUG_ON(slabp->inuse);
-#endif
- list_del(&slabp->list);
- /*
- * Safe to drop the lock. The slab is no longer linked
- * to the cache.
- */
- l3->free_objects -= cache->num;
- spin_unlock_irq(&l3->list_lock);
- slab_destroy(cache, slabp);
- nr_freed++;
- }
-out:
- return nr_freed;
-}
-
-/* Called with cache_chain_mutex held to protect against cpu hotplug */
-static int __cache_shrink(struct kmem_cache *cachep)
-{
- int ret = 0, i = 0;
- struct kmem_list3 *l3;
-
- drain_cpu_caches(cachep);
-
- check_irq_on();
- for_each_online_node(i) {
- l3 = cachep->nodelists[i];
- if (!l3)
- continue;
-
- drain_freelist(cachep, l3, l3->free_objects);
-
- ret += !list_empty(&l3->slabs_full) ||
- !list_empty(&l3->slabs_partial);
- }
- return (ret ? 1 : 0);
-}
-
-/**
- * kmem_cache_shrink - Shrink a cache.
- * @cachep: The cache to shrink.
- *
- * Releases as many slabs as possible for a cache.
- * To help debugging, a zero exit status indicates all slabs were released.
- */
-int kmem_cache_shrink(struct kmem_cache *cachep)
-{
- int ret;
- BUG_ON(!cachep || in_interrupt());
-
- mutex_lock(&cache_chain_mutex);
- ret = __cache_shrink(cachep);
- mutex_unlock(&cache_chain_mutex);
- return ret;
-}
-EXPORT_SYMBOL(kmem_cache_shrink);
-
-int kmem_cache_defrag(int percent, int node)
-{
- return 0;
-}
-
-/*
- * SLAB does not support slab defragmentation
- */
-int kmem_cache_vacate(struct page *page)
-{
- return 0;
-}
-EXPORT_SYMBOL(kmem_cache_vacate);
-
-/**
- * kmem_cache_destroy - delete a cache
- * @cachep: the cache to destroy
- *
- * Remove a &struct kmem_cache object from the slab cache.
- *
- * It is expected this function will be called by a module when it is
- * unloaded. This will remove the cache completely, and avoid a duplicate
- * cache being allocated each time a module is loaded and unloaded, if the
- * module doesn't have persistent in-kernel storage across loads and unloads.
- *
- * The cache must be empty before calling this function.
- *
- * The caller must guarantee that noone will allocate memory from the cache
- * during the kmem_cache_destroy().
- */
-void kmem_cache_destroy(struct kmem_cache *cachep)
-{
- BUG_ON(!cachep || in_interrupt());
-
- /* Find the cache in the chain of caches. */
- mutex_lock(&cache_chain_mutex);
- /*
- * the chain is never empty, cache_cache is never destroyed
- */
- list_del(&cachep->next);
- if (__cache_shrink(cachep)) {
- slab_error(cachep, "Can't free all objects");
- list_add(&cachep->next, &cache_chain);
- mutex_unlock(&cache_chain_mutex);
- return;
- }
-
- if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
- synchronize_rcu();
-
- __kmem_cache_destroy(cachep);
- mutex_unlock(&cache_chain_mutex);
-}
-EXPORT_SYMBOL(kmem_cache_destroy);
-
-/*
- * Get the memory for a slab management obj.
- * For a slab cache when the slab descriptor is off-slab, slab descriptors
- * always come from malloc_sizes caches. The slab descriptor cannot
- * come from the same cache which is getting created because,
- * when we are searching for an appropriate cache for these
- * descriptors in kmem_cache_create, we search through the malloc_sizes array.
- * If we are creating a malloc_sizes cache here it would not be visible to
- * kmem_find_general_cachep till the initialization is complete.
- * Hence we cannot have slabp_cache same as the original cache.
- */
-static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
- int colour_off, gfp_t local_flags,
- int nodeid)
-{
- struct slab *slabp;
-
- if (OFF_SLAB(cachep)) {
- /* Slab management obj is off-slab. */
- slabp = kmem_cache_alloc_node(cachep->slabp_cache,
- local_flags & ~GFP_THISNODE, nodeid);
- if (!slabp)
- return NULL;
- } else {
- slabp = objp + colour_off;
- colour_off += cachep->slab_size;
- }
- slabp->inuse = 0;
- slabp->colouroff = colour_off;
- slabp->s_mem = objp + colour_off;
- slabp->nodeid = nodeid;
- return slabp;
-}
-
-static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
-{
- return (kmem_bufctl_t *) (slabp + 1);
-}
-
-static void cache_init_objs(struct kmem_cache *cachep,
- struct slab *slabp)
-{
- int i;
-
- for (i = 0; i < cachep->num; i++) {
- void *objp = index_to_obj(cachep, slabp, i);
-#if DEBUG
- /* need to poison the objs? */
- if (cachep->flags & SLAB_POISON)
- poison_obj(cachep, objp, POISON_FREE);
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = NULL;
-
- if (cachep->flags & SLAB_RED_ZONE) {
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- /*
- * Constructors are not allowed to allocate memory from the same
- * cache which they are a constructor for. Otherwise, deadlock.
- * They must also be threaded.
- */
- if (cachep->ctor && !(cachep->flags & SLAB_POISON))
- cachep->ctor(objp + obj_offset(cachep), cachep,
- 0);
-
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " end of an object");
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
- slab_error(cachep, "constructor overwrote the"
- " start of an object");
- }
- if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
- OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 0);
-#else
- if (cachep->ctor)
- cachep->ctor(objp, cachep, 0);
-#endif
- slab_bufctl(slabp)[i] = i + 1;
- }
- slab_bufctl(slabp)[i - 1] = BUFCTL_END;
- slabp->free = 0;
-}
-
-static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
-{
- if (CONFIG_ZONE_DMA_FLAG) {
- if (flags & GFP_DMA)
- BUG_ON(!(cachep->gfpflags & GFP_DMA));
- else
- BUG_ON(cachep->gfpflags & GFP_DMA);
- }
-}
-
-static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
- int nodeid)
-{
- void *objp = index_to_obj(cachep, slabp, slabp->free);
- kmem_bufctl_t next;
-
- slabp->inuse++;
- next = slab_bufctl(slabp)[slabp->free];
-#if DEBUG
- slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
- WARN_ON(slabp->nodeid != nodeid);
-#endif
- slabp->free = next;
-
- return objp;
-}
-
-static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
- void *objp, int nodeid)
-{
- unsigned int objnr = obj_to_index(cachep, slabp, objp);
-
-#if DEBUG
- /* Verify that the slab belongs to the intended node */
- WARN_ON(slabp->nodeid != nodeid);
-
- if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
- printk(KERN_ERR "slab: double free detected in cache "
- "'%s', objp %p\n", cachep->name, objp);
- BUG();
- }
-#endif
- slab_bufctl(slabp)[objnr] = slabp->free;
- slabp->free = objnr;
- slabp->inuse--;
-}
-
-/*
- * Map pages beginning at addr to the given cache and slab. This is required
- * for the slab allocator to be able to lookup the cache and slab of a
- * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
- */
-static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
- void *addr)
-{
- int nr_pages;
- struct page *page;
-
- page = virt_to_page(addr);
-
- nr_pages = 1;
- if (likely(!PageCompound(page)))
- nr_pages <<= cache->gfporder;
-
- do {
- page_set_cache(page, cache);
- page_set_slab(page, slab);
- page++;
- } while (--nr_pages);
-}
-
-/*
- * Grow (by 1) the number of slabs within a cache. This is called by
- * kmem_cache_alloc() when there are no active objs left in a cache.
- */
-static int cache_grow(struct kmem_cache *cachep,
- gfp_t flags, int nodeid, void *objp)
-{
- struct slab *slabp;
- size_t offset;
- gfp_t local_flags;
- struct kmem_list3 *l3;
-
- /*
- * Be lazy and only check for valid flags here, keeping it out of the
- * critical path in kmem_cache_alloc().
- */
- BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
-
- local_flags = (flags & GFP_LEVEL_MASK);
- /* Take the l3 list lock to change the colour_next on this node */
- check_irq_off();
- l3 = cachep->nodelists[nodeid];
- spin_lock(&l3->list_lock);
-
- /* Get colour for the slab, and cal the next value. */
- offset = l3->colour_next;
- l3->colour_next++;
- if (l3->colour_next >= cachep->colour)
- l3->colour_next = 0;
- spin_unlock(&l3->list_lock);
-
- offset *= cachep->colour_off;
-
- if (local_flags & __GFP_WAIT)
- local_irq_enable();
-
- /*
- * The test for missing atomic flag is performed here, rather than
- * the more obvious place, simply to reduce the critical path length
- * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
- * will eventually be caught here (where it matters).
- */
- kmem_flagcheck(cachep, flags);
-
- /*
- * Get mem for the objs. Attempt to allocate a physical page from
- * 'nodeid'.
- */
- if (!objp)
- objp = kmem_getpages(cachep, flags, nodeid);
- if (!objp)
- goto failed;
-
- /* Get slab management. */
- slabp = alloc_slabmgmt(cachep, objp, offset,
- local_flags & ~GFP_THISNODE, nodeid);
- if (!slabp)
- goto opps1;
-
- slabp->nodeid = nodeid;
- slab_map_pages(cachep, slabp, objp);
-
- cache_init_objs(cachep, slabp);
-
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- check_irq_off();
- spin_lock(&l3->list_lock);
-
- /* Make slab active. */
- list_add_tail(&slabp->list, &(l3->slabs_free));
- STATS_INC_GROWN(cachep);
- l3->free_objects += cachep->num;
- spin_unlock(&l3->list_lock);
- return 1;
-opps1:
- kmem_freepages(cachep, objp);
-failed:
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- return 0;
-}
-
-#if DEBUG
-
-/*
- * Perform extra freeing checks:
- * - detect bad pointers.
- * - POISON/RED_ZONE checking
- */
-static void kfree_debugcheck(const void *objp)
-{
- if (!virt_addr_valid(objp)) {
- printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
- (unsigned long)objp);
- BUG();
- }
-}
-
-static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
-{
- unsigned long long redzone1, redzone2;
-
- redzone1 = *dbg_redzone1(cache, obj);
- redzone2 = *dbg_redzone2(cache, obj);
-
- /*
- * Redzone is ok.
- */
- if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
- return;
-
- if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
- slab_error(cache, "double free detected");
- else
- slab_error(cache, "memory outside object was overwritten");
-
- printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
- obj, redzone1, redzone2);
-}
-
-static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
- void *caller)
-{
- struct page *page;
- unsigned int objnr;
- struct slab *slabp;
-
- objp -= obj_offset(cachep);
- kfree_debugcheck(objp);
- page = virt_to_head_page(objp);
-
- slabp = page_get_slab(page);
-
- if (cachep->flags & SLAB_RED_ZONE) {
- verify_redzone_free(cachep, objp);
- *dbg_redzone1(cachep, objp) = RED_INACTIVE;
- *dbg_redzone2(cachep, objp) = RED_INACTIVE;
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = caller;
-
- objnr = obj_to_index(cachep, slabp, objp);
-
- BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
-
-#ifdef CONFIG_DEBUG_SLAB_LEAK
- slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
-#endif
- if (cachep->flags & SLAB_POISON) {
-#ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
- store_stackinfo(cachep, objp, (unsigned long)caller);
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 0);
- } else {
- poison_obj(cachep, objp, POISON_FREE);
- }
-#else
- poison_obj(cachep, objp, POISON_FREE);
-#endif
- }
- return objp;
-}
-
-static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
-{
- kmem_bufctl_t i;
- int entries = 0;
-
- /* Check slab's freelist to see if this obj is there. */
- for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
- entries++;
- if (entries > cachep->num || i >= cachep->num)
- goto bad;
- }
- if (entries != cachep->num - slabp->inuse) {
-bad:
- printk(KERN_ERR "slab: Internal list corruption detected in "
- "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse);
- for (i = 0;
- i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
- i++) {
- if (i % 16 == 0)
- printk("\n%03x:", i);
- printk(" %02x", ((unsigned char *)slabp)[i]);
- }
- printk("\n");
- BUG();
- }
-}
-#else
-#define kfree_debugcheck(x) do { } while(0)
-#define cache_free_debugcheck(x,objp,z) (objp)
-#define check_slabp(x,y) do { } while(0)
-#endif
-
-static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
-{
- int batchcount;
- struct kmem_list3 *l3;
- struct array_cache *ac;
- int node;
-
- node = numa_node_id();
-
- check_irq_off();
- ac = cpu_cache_get(cachep);
-retry:
- batchcount = ac->batchcount;
- if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
- /*
- * If there was little recent activity on this cache, then
- * perform only a partial refill. Otherwise we could generate
- * refill bouncing.
- */
- batchcount = BATCHREFILL_LIMIT;
- }
- l3 = cachep->nodelists[node];
-
- BUG_ON(ac->avail > 0 || !l3);
- spin_lock(&l3->list_lock);
-
- /* See if we can refill from the shared array */
- if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
- goto alloc_done;
-
- while (batchcount > 0) {
- struct list_head *entry;
- struct slab *slabp;
- /* Get slab alloc is to come from. */
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
-
- slabp = list_entry(entry, struct slab, list);
- check_slabp(cachep, slabp);
- check_spinlock_acquired(cachep);
-
- /*
- * The slab was either on partial or free list so
- * there must be at least one object available for
- * allocation.
- */
- BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
-
- while (slabp->inuse < cachep->num && batchcount--) {
- STATS_INC_ALLOCED(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
-
- ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
- node);
- }
- check_slabp(cachep, slabp);
-
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &l3->slabs_full);
- else
- list_add(&slabp->list, &l3->slabs_partial);
- }
-
-must_grow:
- l3->free_objects -= ac->avail;
-alloc_done:
- spin_unlock(&l3->list_lock);
-
- if (unlikely(!ac->avail)) {
- int x;
- x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
-
- /* cache_grow can reenable interrupts, then ac could change. */
- ac = cpu_cache_get(cachep);
- if (!x && ac->avail == 0) /* no objects in sight? abort */
- return NULL;
-
- if (!ac->avail) /* objects refilled by interrupt? */
- goto retry;
- }
- ac->touched = 1;
- return ac->entry[--ac->avail];
-}
-
-static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
- gfp_t flags)
-{
- might_sleep_if(flags & __GFP_WAIT);
-#if DEBUG
- kmem_flagcheck(cachep, flags);
-#endif
-}
-
-#if DEBUG
-static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
- gfp_t flags, void *objp, void *caller)
-{
- if (!objp)
- return objp;
- if (cachep->flags & SLAB_POISON) {
-#ifdef CONFIG_DEBUG_PAGEALLOC
- if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp),
- cachep->buffer_size / PAGE_SIZE, 1);
- else
- check_poison_obj(cachep, objp);
-#else
- check_poison_obj(cachep, objp);
-#endif
- poison_obj(cachep, objp, POISON_INUSE);
- }
- if (cachep->flags & SLAB_STORE_USER)
- *dbg_userword(cachep, objp) = caller;
-
- if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
- *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
- slab_error(cachep, "double free, or memory outside"
- " object was overwritten");
- printk(KERN_ERR
- "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
- objp, *dbg_redzone1(cachep, objp),
- *dbg_redzone2(cachep, objp));
- }
- *dbg_redzone1(cachep, objp) = RED_ACTIVE;
- *dbg_redzone2(cachep, objp) = RED_ACTIVE;
- }
-#ifdef CONFIG_DEBUG_SLAB_LEAK
- {
- struct slab *slabp;
- unsigned objnr;
-
- slabp = page_get_slab(virt_to_head_page(objp));
- objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
- slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
- }
-#endif
- objp += obj_offset(cachep);
- if (cachep->ctor && cachep->flags & SLAB_POISON)
- cachep->ctor(objp, cachep, 0);
-#if ARCH_SLAB_MINALIGN
- if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
- printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
- objp, ARCH_SLAB_MINALIGN);
- }
-#endif
- return objp;
-}
-#else
-#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
-#endif
-
-#ifdef CONFIG_FAILSLAB
-
-static struct failslab_attr {
-
- struct fault_attr attr;
-
- u32 ignore_gfp_wait;
-#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
- struct dentry *ignore_gfp_wait_file;
-#endif
-
-} failslab = {
- .attr = FAULT_ATTR_INITIALIZER,
- .ignore_gfp_wait = 1,
-};
-
-static int __init setup_failslab(char *str)
-{
- return setup_fault_attr(&failslab.attr, str);
-}
-__setup("failslab=", setup_failslab);
-
-static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
-{
- if (cachep == &cache_cache)
- return 0;
- if (flags & __GFP_NOFAIL)
- return 0;
- if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
- return 0;
-
- return should_fail(&failslab.attr, obj_size(cachep));
-}
-
-#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
-
-static int __init failslab_debugfs(void)
-{
- mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
- struct dentry *dir;
- int err;
-
- err = init_fault_attr_dentries(&failslab.attr, "failslab");
- if (err)
- return err;
- dir = failslab.attr.dentries.dir;
-
- failslab.ignore_gfp_wait_file =
- debugfs_create_bool("ignore-gfp-wait", mode, dir,
- &failslab.ignore_gfp_wait);
-
- if (!failslab.ignore_gfp_wait_file) {
- err = -ENOMEM;
- debugfs_remove(failslab.ignore_gfp_wait_file);
- cleanup_fault_attr_dentries(&failslab.attr);
- }
-
- return err;
-}
-
-late_initcall(failslab_debugfs);
-
-#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
-
-#else /* CONFIG_FAILSLAB */
-
-static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
-{
- return 0;
-}
-
-#endif /* CONFIG_FAILSLAB */
-
-static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
-{
- void *objp;
- struct array_cache *ac;
-
- check_irq_off();
-
- ac = cpu_cache_get(cachep);
- if (likely(ac->avail)) {
- STATS_INC_ALLOCHIT(cachep);
- ac->touched = 1;
- objp = ac->entry[--ac->avail];
- } else {
- STATS_INC_ALLOCMISS(cachep);
- objp = cache_alloc_refill(cachep, flags);
- }
- return objp;
-}
-
-#ifdef CONFIG_NUMA
-/*
- * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
- *
- * If we are in_interrupt, then process context, including cpusets and
- * mempolicy, may not apply and should not be used for allocation policy.
- */
-static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
-{
- int nid_alloc, nid_here;
-
- if (in_interrupt() || (flags & __GFP_THISNODE))
- return NULL;
- nid_alloc = nid_here = numa_node_id();
- if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
- nid_alloc = cpuset_mem_spread_node();
- else if (current->mempolicy)
- nid_alloc = slab_node(current->mempolicy);
- if (nid_alloc != nid_here)
- return ____cache_alloc_node(cachep, flags, nid_alloc);
- return NULL;
-}
-
-/*
- * Fallback function if there was no memory available and no objects on a
- * certain node and fall back is permitted. First we scan all the
- * available nodelists for available objects. If that fails then we
- * perform an allocation without specifying a node. This allows the page
- * allocator to do its reclaim / fallback magic. We then insert the
- * slab into the proper nodelist and then allocate from it.
- */
-static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
-{
- struct zonelist *zonelist;
- gfp_t local_flags;
- struct zone **z;
- void *obj = NULL;
- int nid;
-
- if (flags & __GFP_THISNODE)
- return NULL;
-
- zonelist = &NODE_DATA(slab_node(current->mempolicy))
- ->node_zonelists[gfp_zone(flags)];
- local_flags = (flags & GFP_LEVEL_MASK);
-
-retry:
- /*
- * Look through allowed nodes for objects available
- * from existing per node queues.
- */
- for (z = zonelist->zones; *z && !obj; z++) {
- nid = zone_to_nid(*z);
-
- if (cpuset_zone_allowed_hardwall(*z, flags) &&
- cache->nodelists[nid] &&
- cache->nodelists[nid]->free_objects)
- obj = ____cache_alloc_node(cache,
- flags | GFP_THISNODE, nid);
- }
-
- if (!obj) {
- /*
- * This allocation will be performed within the constraints
- * of the current cpuset / memory policy requirements.
- * We may trigger various forms of reclaim on the allowed
- * set and go into memory reserves if necessary.
- */
- if (local_flags & __GFP_WAIT)
- local_irq_enable();
- kmem_flagcheck(cache, flags);
- obj = kmem_getpages(cache, flags, -1);
- if (local_flags & __GFP_WAIT)
- local_irq_disable();
- if (obj) {
- /*
- * Insert into the appropriate per node queues
- */
- nid = page_to_nid(virt_to_page(obj));
- if (cache_grow(cache, flags, nid, obj)) {
- obj = ____cache_alloc_node(cache,
- flags | GFP_THISNODE, nid);
- if (!obj)
- /*
- * Another processor may allocate the
- * objects in the slab since we are
- * not holding any locks.
- */
- goto retry;
- } else {
- /* cache_grow already freed obj */
- obj = NULL;
- }
- }
- }
- return obj;
-}
-
-/*
- * A interface to enable slab creation on nodeid
- */
-static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
- int nodeid)
-{
- struct list_head *entry;
- struct slab *slabp;
- struct kmem_list3 *l3;
- void *obj;
- int x;
-
- l3 = cachep->nodelists[nodeid];
- BUG_ON(!l3);
-
-retry:
- check_irq_off();
- spin_lock(&l3->list_lock);
- entry = l3->slabs_partial.next;
- if (entry == &l3->slabs_partial) {
- l3->free_touched = 1;
- entry = l3->slabs_free.next;
- if (entry == &l3->slabs_free)
- goto must_grow;
- }
-
- slabp = list_entry(entry, struct slab, list);
- check_spinlock_acquired_node(cachep, nodeid);
- check_slabp(cachep, slabp);
-
- STATS_INC_NODEALLOCS(cachep);
- STATS_INC_ACTIVE(cachep);
- STATS_SET_HIGH(cachep);
-
- BUG_ON(slabp->inuse == cachep->num);
-
- obj = slab_get_obj(cachep, slabp, nodeid);
- check_slabp(cachep, slabp);
- l3->free_objects--;
- /* move slabp to correct slabp list: */
- list_del(&slabp->list);
-
- if (slabp->free == BUFCTL_END)
- list_add(&slabp->list, &l3->slabs_full);
- else
- list_add(&slabp->list, &l3->slabs_partial);
-
- spin_unlock(&l3->list_lock);
- goto done;
-
-must_grow:
- spin_unlock(&l3->list_lock);
- x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
- if (x)
- goto retry;
-
- return fallback_alloc(cachep, flags);
-
-done:
- return obj;
-}
-
-/**
- * kmem_cache_alloc_node - Allocate an object on the specified node
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- * @nodeid: node number of the target node.
- * @caller: return address of caller, used for debug information
- *
- * Identical to kmem_cache_alloc but it will allocate memory on the given
- * node, which can improve the performance for cpu bound structures.
- *
- * Fallback to other node is possible if __GFP_THISNODE is not set.
- */
-static __always_inline void *
-__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
- void *caller)
-{
- unsigned long save_flags;
- void *ptr;
-
- if (should_failslab(cachep, flags))
- return NULL;
-
- cache_alloc_debugcheck_before(cachep, flags);
- local_irq_save(save_flags);
-
- if (unlikely(nodeid == -1))
- nodeid = numa_node_id();
-
- if (unlikely(!cachep->nodelists[nodeid])) {
- /* Node not bootstrapped yet */
- ptr = fallback_alloc(cachep, flags);
- goto out;
- }
-
- if (nodeid == numa_node_id()) {
- /*
- * Use the locally cached objects if possible.
- * However ____cache_alloc does not allow fallback
- * to other nodes. It may fail while we still have
- * objects on other nodes available.
- */
- ptr = ____cache_alloc(cachep, flags);
- if (ptr)
- goto out;
- }
- /* ___cache_alloc_node can fall back to other nodes */
- ptr = ____cache_alloc_node(cachep, flags, nodeid);
- out:
- local_irq_restore(save_flags);
- ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
-
- if (unlikely((flags & __GFP_ZERO) && ptr))
- memset(ptr, 0, obj_size(cachep));
-
- return ptr;
-}
-
-static __always_inline void *
-__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
-{
- void *objp;
-
- if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
- objp = alternate_node_alloc(cache, flags);
- if (objp)
- goto out;
- }
- objp = ____cache_alloc(cache, flags);
-
- /*
- * We may just have run out of memory on the local node.
- * ____cache_alloc_node() knows how to locate memory on other nodes
- */
- if (!objp)
- objp = ____cache_alloc_node(cache, flags, numa_node_id());
-
- out:
- return objp;
-}
-#else
-
-static __always_inline void *
-__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
-{
- return ____cache_alloc(cachep, flags);
-}
-
-#endif /* CONFIG_NUMA */
-
-static __always_inline void *
-__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
-{
- unsigned long save_flags;
- void *objp;
-
- if (should_failslab(cachep, flags))
- return NULL;
-
- cache_alloc_debugcheck_before(cachep, flags);
- local_irq_save(save_flags);
- objp = __do_cache_alloc(cachep, flags);
- local_irq_restore(save_flags);
- objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
- prefetchw(objp);
-
- if (unlikely((flags & __GFP_ZERO) && objp))
- memset(objp, 0, obj_size(cachep));
-
- return objp;
-}
-
-/*
- * Caller needs to acquire correct kmem_list's list_lock
- */
-static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
- int node)
-{
- int i;
- struct kmem_list3 *l3;
-
- for (i = 0; i < nr_objects; i++) {
- void *objp = objpp[i];
- struct slab *slabp;
-
- slabp = virt_to_slab(objp);
- l3 = cachep->nodelists[node];
- list_del(&slabp->list);
- check_spinlock_acquired_node(cachep, node);
- check_slabp(cachep, slabp);
- slab_put_obj(cachep, slabp, objp, node);
- STATS_DEC_ACTIVE(cachep);
- l3->free_objects++;
- check_slabp(cachep, slabp);
-
- /* fixup slab chains */
- if (slabp->inuse == 0) {
- if (l3->free_objects > l3->free_limit) {
- l3->free_objects -= cachep->num;
- /* No need to drop any previously held
- * lock here, even if we have a off-slab slab
- * descriptor it is guaranteed to come from
- * a different cache, refer to comments before
- * alloc_slabmgmt.
- */
- slab_destroy(cachep, slabp);
- } else {
- list_add(&slabp->list, &l3->slabs_free);
- }
- } else {
- /* Unconditionally move a slab to the end of the
- * partial list on free - maximum time for the
- * other objects to be freed, too.
- */
- list_add_tail(&slabp->list, &l3->slabs_partial);
- }
- }
-}
-
-static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
-{
- int batchcount;
- struct kmem_list3 *l3;
- int node = numa_node_id();
-
- batchcount = ac->batchcount;
-#if DEBUG
- BUG_ON(!batchcount || batchcount > ac->avail);
-#endif
- check_irq_off();
- l3 = cachep->nodelists[node];
- spin_lock(&l3->list_lock);
- if (l3->shared) {
- struct array_cache *shared_array = l3->shared;
- int max = shared_array->limit - shared_array->avail;
- if (max) {
- if (batchcount > max)
- batchcount = max;
- memcpy(&(shared_array->entry[shared_array->avail]),
- ac->entry, sizeof(void *) * batchcount);
- shared_array->avail += batchcount;
- goto free_done;
- }
- }
-
- free_block(cachep, ac->entry, batchcount, node);
-free_done:
-#if STATS
- {
- int i = 0;
- struct list_head *p;
-
- p = l3->slabs_free.next;
- while (p != &(l3->slabs_free)) {
- struct slab *slabp;
-
- slabp = list_entry(p, struct slab, list);
- BUG_ON(slabp->inuse);
-
- i++;
- p = p->next;
- }
- STATS_SET_FREEABLE(cachep, i);
- }
-#endif
- spin_unlock(&l3->list_lock);
- ac->avail -= batchcount;
- memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
-}
-
-/*
- * Release an obj back to its cache. If the obj has a constructed state, it must
- * be in this state _before_ it is released. Called with disabled ints.
- */
-static inline void __cache_free(struct kmem_cache *cachep, void *objp)
-{
- struct array_cache *ac = cpu_cache_get(cachep);
-
- check_irq_off();
- objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
-
- if (cache_free_alien(cachep, objp))
- return;
-
- if (likely(ac->avail < ac->limit)) {
- STATS_INC_FREEHIT(cachep);
- ac->entry[ac->avail++] = objp;
- return;
- } else {
- STATS_INC_FREEMISS(cachep);
- cache_flusharray(cachep, ac);
- ac->entry[ac->avail++] = objp;
- }
-}
-
-/**
- * kmem_cache_alloc - Allocate an object
- * @cachep: The cache to allocate from.
- * @flags: See kmalloc().
- *
- * Allocate an object from this cache. The flags are only relevant
- * if the cache has no available objects.
- */
-void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
-{
- return __cache_alloc(cachep, flags, __builtin_return_address(0));
-}
-EXPORT_SYMBOL(kmem_cache_alloc);
-
-/**
- * kmem_ptr_validate - check if an untrusted pointer might
- * be a slab entry.
- * @cachep: the cache we're checking against
- * @ptr: pointer to validate
- *
- * This verifies that the untrusted pointer looks sane:
- * it is _not_ a guarantee that the pointer is actually
- * part of the slab cache in question, but it at least
- * validates that the pointer can be dereferenced and
- * looks half-way sane.
- *
- * Currently only used for dentry validation.
- */
-int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
-{
- unsigned long addr = (unsigned long)ptr;
- unsigned long min_addr = PAGE_OFFSET;
- unsigned long align_mask = BYTES_PER_WORD - 1;
- unsigned long size = cachep->buffer_size;
- struct page *page;
-
- if (unlikely(addr < min_addr))
- goto out;
- if (unlikely(addr > (unsigned long)high_memory - size))
- goto out;
- if (unlikely(addr & align_mask))
- goto out;
- if (unlikely(!kern_addr_valid(addr)))
- goto out;
- if (unlikely(!kern_addr_valid(addr + size - 1)))
- goto out;
- page = virt_to_page(ptr);
- if (unlikely(!PageSlab(page)))
- goto out;
- if (unlikely(page_get_cache(page) != cachep))
- goto out;
- return 1;
-out:
- return 0;
-}
-
-#ifdef CONFIG_NUMA
-void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
-{
- return __cache_alloc_node(cachep, flags, nodeid,
- __builtin_return_address(0));
-}
-EXPORT_SYMBOL(kmem_cache_alloc_node);
-
-static __always_inline void *
-__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
-{
- struct kmem_cache *cachep;
-
- cachep = kmem_find_general_cachep(size, flags);
- if (unlikely(ZERO_OR_NULL_PTR(cachep)))
- return cachep;
- return kmem_cache_alloc_node(cachep, flags, node);
-}
-
-#ifdef CONFIG_DEBUG_SLAB
-void *__kmalloc_node(size_t size, gfp_t flags, int node)
-{
- return __do_kmalloc_node(size, flags, node,
- __builtin_return_address(0));
-}
-EXPORT_SYMBOL(__kmalloc_node);
-
-void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
- int node, void *caller)
-{
- return __do_kmalloc_node(size, flags, node, caller);
-}
-EXPORT_SYMBOL(__kmalloc_node_track_caller);
-#else
-void *__kmalloc_node(size_t size, gfp_t flags, int node)
-{
- return __do_kmalloc_node(size, flags, node, NULL);
-}
-EXPORT_SYMBOL(__kmalloc_node);
-#endif /* CONFIG_DEBUG_SLAB */
-#endif /* CONFIG_NUMA */
-
-/**
- * __do_kmalloc - allocate memory
- * @size: how many bytes of memory are required.
- * @flags: the type of memory to allocate (see kmalloc).
- * @caller: function caller for debug tracking of the caller
- */
-static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
- void *caller)
-{
- struct kmem_cache *cachep;
-
- /* If you want to save a few bytes .text space: replace
- * __ with kmem_.
- * Then kmalloc uses the uninlined functions instead of the inline
- * functions.
- */
- cachep = __find_general_cachep(size, flags);
- if (unlikely(cachep == NULL))
- return NULL;
- return __cache_alloc(cachep, flags, caller);
-}
-
-
-#ifdef CONFIG_DEBUG_SLAB
-void *__kmalloc(size_t size, gfp_t flags)
-{
- return __do_kmalloc(size, flags, __builtin_return_address(0));
-}
-EXPORT_SYMBOL(__kmalloc);
-
-void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
-{
- return __do_kmalloc(size, flags, caller);
-}
-EXPORT_SYMBOL(__kmalloc_track_caller);
-
-#else
-void *__kmalloc(size_t size, gfp_t flags)
-{
- return __do_kmalloc(size, flags, NULL);
-}
-EXPORT_SYMBOL(__kmalloc);
-#endif
-
-/**
- * kmem_cache_free - Deallocate an object
- * @cachep: The cache the allocation was from.
- * @objp: The previously allocated object.
- *
- * Free an object which was previously allocated from this
- * cache.
- */
-void kmem_cache_free(struct kmem_cache *cachep, void *objp)
-{
- unsigned long flags;
-
- BUG_ON(virt_to_cache(objp) != cachep);
-
- local_irq_save(flags);
- debug_check_no_locks_freed(objp, obj_size(cachep));
- __cache_free(cachep, objp);
- local_irq_restore(flags);
-}
-EXPORT_SYMBOL(kmem_cache_free);
-
-/**
- * kfree - free previously allocated memory
- * @objp: pointer returned by kmalloc.
- *
- * If @objp is NULL, no operation is performed.
- *
- * Don't free memory not originally allocated by kmalloc()
- * or you will run into trouble.
- */
-void kfree(const void *objp)
-{
- struct kmem_cache *c;
- unsigned long flags;
-
- if (unlikely(ZERO_OR_NULL_PTR(objp)))
- return;
- local_irq_save(flags);
- kfree_debugcheck(objp);
- c = virt_to_cache(objp);
- debug_check_no_locks_freed(objp, obj_size(c));
- __cache_free(c, (void *)objp);
- local_irq_restore(flags);
-}
-EXPORT_SYMBOL(kfree);
-
-unsigned int kmem_cache_size(struct kmem_cache *cachep)
-{
- return obj_size(cachep);
-}
-EXPORT_SYMBOL(kmem_cache_size);
-
-const char *kmem_cache_name(struct kmem_cache *cachep)
-{
- return cachep->name;
-}
-EXPORT_SYMBOL_GPL(kmem_cache_name);
-
-/*
- * This initializes kmem_list3 or resizes varioius caches for all nodes.
- */
-static int alloc_kmemlist(struct kmem_cache *cachep)
-{
- int node;
- struct kmem_list3 *l3;
- struct array_cache *new_shared;
- struct array_cache **new_alien = NULL;
-
- for_each_online_node(node) {
-
- if (use_alien_caches) {
- new_alien = alloc_alien_cache(node, cachep->limit);
- if (!new_alien)
- goto fail;
- }
-
- new_shared = NULL;
- if (cachep->shared) {
- new_shared = alloc_arraycache(node,
- cachep->shared*cachep->batchcount,
- 0xbaadf00d);
- if (!new_shared) {
- free_alien_cache(new_alien);
- goto fail;
- }
- }
-
- l3 = cachep->nodelists[node];
- if (l3) {
- struct array_cache *shared = l3->shared;
-
- spin_lock_irq(&l3->list_lock);
-
- if (shared)
- free_block(cachep, shared->entry,
- shared->avail, node);
-
- l3->shared = new_shared;
- if (!l3->alien) {
- l3->alien = new_alien;
- new_alien = NULL;
- }
- l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- spin_unlock_irq(&l3->list_lock);
- kfree(shared);
- free_alien_cache(new_alien);
- continue;
- }
- l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
- if (!l3) {
- free_alien_cache(new_alien);
- kfree(new_shared);
- goto fail;
- }
-
- kmem_list3_init(l3);
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
- l3->shared = new_shared;
- l3->alien = new_alien;
- l3->free_limit = (1 + nr_cpus_node(node)) *
- cachep->batchcount + cachep->num;
- cachep->nodelists[node] = l3;
- }
- return 0;
-
-fail:
- if (!cachep->next.next) {
- /* Cache is not active yet. Roll back what we did */
- node--;
- while (node >= 0) {
- if (cachep->nodelists[node]) {
- l3 = cachep->nodelists[node];
-
- kfree(l3->shared);
- free_alien_cache(l3->alien);
- kfree(l3);
- cachep->nodelists[node] = NULL;
- }
- node--;
- }
- }
- return -ENOMEM;
-}
-
-struct ccupdate_struct {
- struct kmem_cache *cachep;
- struct array_cache *new[NR_CPUS];
-};
-
-static void do_ccupdate_local(void *info)
-{
- struct ccupdate_struct *new = info;
- struct array_cache *old;
-
- check_irq_off();
- old = cpu_cache_get(new->cachep);
-
- new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
- new->new[smp_processor_id()] = old;
-}
-
-/* Always called with the cache_chain_mutex held */
-static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
- int batchcount, int shared)
-{
- struct ccupdate_struct *new;
- int i;
-
- new = kzalloc(sizeof(*new), GFP_KERNEL);
- if (!new)
- return -ENOMEM;
-
- for_each_online_cpu(i) {
- new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
- batchcount);
- if (!new->new[i]) {
- for (i--; i >= 0; i--)
- kfree(new->new[i]);
- kfree(new);
- return -ENOMEM;
- }
- }
- new->cachep = cachep;
-
- on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
-
- check_irq_on();
- cachep->batchcount = batchcount;
- cachep->limit = limit;
- cachep->shared = shared;
-
- for_each_online_cpu(i) {
- struct array_cache *ccold = new->new[i];
- if (!ccold)
- continue;
- spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
- free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
- spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
- kfree(ccold);
- }
- kfree(new);
- return alloc_kmemlist(cachep);
-}
-
-/* Called with cache_chain_mutex held always */
-static int enable_cpucache(struct kmem_cache *cachep)
-{
- int err;
- int limit, shared;
-
- /*
- * The head array serves three purposes:
- * - create a LIFO ordering, i.e. return objects that are cache-warm
- * - reduce the number of spinlock operations.
- * - reduce the number of linked list operations on the slab and
- * bufctl chains: array operations are cheaper.
- * The numbers are guessed, we should auto-tune as described by
- * Bonwick.
- */
- if (cachep->buffer_size > 131072)
- limit = 1;
- else if (cachep->buffer_size > PAGE_SIZE)
- limit = 8;
- else if (cachep->buffer_size > 1024)
- limit = 24;
- else if (cachep->buffer_size > 256)
- limit = 54;
- else
- limit = 120;
-
- /*
- * CPU bound tasks (e.g. network routing) can exhibit cpu bound
- * allocation behaviour: Most allocs on one cpu, most free operations
- * on another cpu. For these cases, an efficient object passing between
- * cpus is necessary. This is provided by a shared array. The array
- * replaces Bonwick's magazine layer.
- * On uniprocessor, it's functionally equivalent (but less efficient)
- * to a larger limit. Thus disabled by default.
- */
- shared = 0;
- if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
- shared = 8;
-
-#if DEBUG
- /*
- * With debugging enabled, large batchcount lead to excessively long
- * periods with disabled local interrupts. Limit the batchcount
- */
- if (limit > 32)
- limit = 32;
-#endif
- err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
- if (err)
- printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
- cachep->name, -err);
- return err;
-}
-
-/*
- * Drain an array if it contains any elements taking the l3 lock only if
- * necessary. Note that the l3 listlock also protects the array_cache
- * if drain_array() is used on the shared array.
- */
-void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
- struct array_cache *ac, int force, int node)
-{
- int tofree;
-
- if (!ac || !ac->avail)
- return;
- if (ac->touched && !force) {
- ac->touched = 0;
- } else {
- spin_lock_irq(&l3->list_lock);
- if (ac->avail) {
- tofree = force ? ac->avail : (ac->limit + 4) / 5;
- if (tofree > ac->avail)
- tofree = (ac->avail + 1) / 2;
- free_block(cachep, ac->entry, tofree, node);
- ac->avail -= tofree;
- memmove(ac->entry, &(ac->entry[tofree]),
- sizeof(void *) * ac->avail);
- }
- spin_unlock_irq(&l3->list_lock);
- }
-}
-
-/**
- * cache_reap - Reclaim memory from caches.
- * @w: work descriptor
- *
- * Called from workqueue/eventd every few seconds.
- * Purpose:
- * - clear the per-cpu caches for this CPU.
- * - return freeable pages to the main free memory pool.
- *
- * If we cannot acquire the cache chain mutex then just give up - we'll try
- * again on the next iteration.
- */
-static void cache_reap(struct work_struct *w)
-{
- struct kmem_cache *searchp;
- struct kmem_list3 *l3;
- int node = numa_node_id();
- struct delayed_work *work =
- container_of(w, struct delayed_work, work);
-
- if (!mutex_trylock(&cache_chain_mutex))
- /* Give up. Setup the next iteration. */
- goto out;
-
- list_for_each_entry(searchp, &cache_chain, next) {
- check_irq_on();
-
- /*
- * We only take the l3 lock if absolutely necessary and we
- * have established with reasonable certainty that
- * we can do some work if the lock was obtained.
- */
- l3 = searchp->nodelists[node];
-
- reap_alien(searchp, l3);
-
- drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
-
- /*
- * These are racy checks but it does not matter
- * if we skip one check or scan twice.
- */
- if (time_after(l3->next_reap, jiffies))
- goto next;
-
- l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
-
- drain_array(searchp, l3, l3->shared, 0, node);
-
- if (l3->free_touched)
- l3->free_touched = 0;
- else {
- int freed;
-
- freed = drain_freelist(searchp, l3, (l3->free_limit +
- 5 * searchp->num - 1) / (5 * searchp->num));
- STATS_ADD_REAPED(searchp, freed);
- }
-next:
- cond_resched();
- }
- check_irq_on();
- mutex_unlock(&cache_chain_mutex);
- next_reap_node();
-out:
- /* Set up the next iteration */
- schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
-}
-
-#ifdef CONFIG_PROC_FS
-
-static void print_slabinfo_header(struct seq_file *m)
-{
- /*
- * Output format version, so at least we can change it
- * without _too_ many complaints.
- */
-#if STATS
- seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
-#else
- seq_puts(m, "slabinfo - version: 2.1\n");
-#endif
- seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
- "<objperslab> <pagesperslab>");
- seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
- seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
-#if STATS
- seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
- "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
- seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
-#endif
- seq_putc(m, '\n');
-}
-
-static void *s_start(struct seq_file *m, loff_t *pos)
-{
- loff_t n = *pos;
-
- mutex_lock(&cache_chain_mutex);
- if (!n)
- print_slabinfo_header(m);
-
- return seq_list_start(&cache_chain, *pos);
-}
-
-static void *s_next(struct seq_file *m, void *p, loff_t *pos)
-{
- return seq_list_next(p, &cache_chain, pos);
-}
-
-static void s_stop(struct seq_file *m, void *p)
-{
- mutex_unlock(&cache_chain_mutex);
-}
-
-static int s_show(struct seq_file *m, void *p)
-{
- struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
- struct slab *slabp;
- unsigned long active_objs;
- unsigned long num_objs;
- unsigned long active_slabs = 0;
- unsigned long num_slabs, free_objects = 0, shared_avail = 0;
- const char *name;
- char *error = NULL;
- int node;
- struct kmem_list3 *l3;
-
- active_objs = 0;
- num_slabs = 0;
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
-
- check_irq_on();
- spin_lock_irq(&l3->list_lock);
-
- list_for_each_entry(slabp, &l3->slabs_full, list) {
- if (slabp->inuse != cachep->num && !error)
- error = "slabs_full accounting error";
- active_objs += cachep->num;
- active_slabs++;
- }
- list_for_each_entry(slabp, &l3->slabs_partial, list) {
- if (slabp->inuse == cachep->num && !error)
- error = "slabs_partial inuse accounting error";
- if (!slabp->inuse && !error)
- error = "slabs_partial/inuse accounting error";
- active_objs += slabp->inuse;
- active_slabs++;
- }
- list_for_each_entry(slabp, &l3->slabs_free, list) {
- if (slabp->inuse && !error)
- error = "slabs_free/inuse accounting error";
- num_slabs++;
- }
- free_objects += l3->free_objects;
- if (l3->shared)
- shared_avail += l3->shared->avail;
-
- spin_unlock_irq(&l3->list_lock);
- }
- num_slabs += active_slabs;
- num_objs = num_slabs * cachep->num;
- if (num_objs - active_objs != free_objects && !error)
- error = "free_objects accounting error";
-
- name = cachep->name;
- if (error)
- printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
-
- seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
- name, active_objs, num_objs, cachep->buffer_size,
- cachep->num, (1 << cachep->gfporder));
- seq_printf(m, " : tunables %4u %4u %4u",
- cachep->limit, cachep->batchcount, cachep->shared);
- seq_printf(m, " : slabdata %6lu %6lu %6lu",
- active_slabs, num_slabs, shared_avail);
-#if STATS
- { /* list3 stats */
- unsigned long high = cachep->high_mark;
- unsigned long allocs = cachep->num_allocations;
- unsigned long grown = cachep->grown;
- unsigned long reaped = cachep->reaped;
- unsigned long errors = cachep->errors;
- unsigned long max_freeable = cachep->max_freeable;
- unsigned long node_allocs = cachep->node_allocs;
- unsigned long node_frees = cachep->node_frees;
- unsigned long overflows = cachep->node_overflow;
-
- seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
- %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
- reaped, errors, max_freeable, node_allocs,
- node_frees, overflows);
- }
- /* cpu stats */
- {
- unsigned long allochit = atomic_read(&cachep->allochit);
- unsigned long allocmiss = atomic_read(&cachep->allocmiss);
- unsigned long freehit = atomic_read(&cachep->freehit);
- unsigned long freemiss = atomic_read(&cachep->freemiss);
-
- seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
- allochit, allocmiss, freehit, freemiss);
- }
-#endif
- seq_putc(m, '\n');
- return 0;
-}
-
-/*
- * slabinfo_op - iterator that generates /proc/slabinfo
- *
- * Output layout:
- * cache-name
- * num-active-objs
- * total-objs
- * object size
- * num-active-slabs
- * total-slabs
- * num-pages-per-slab
- * + further values on SMP and with statistics enabled
- */
-
-const struct seq_operations slabinfo_op = {
- .start = s_start,
- .next = s_next,
- .stop = s_stop,
- .show = s_show,
-};
-
-#define MAX_SLABINFO_WRITE 128
-/**
- * slabinfo_write - Tuning for the slab allocator
- * @file: unused
- * @buffer: user buffer
- * @count: data length
- * @ppos: unused
- */
-ssize_t slabinfo_write(struct file *file, const char __user * buffer,
- size_t count, loff_t *ppos)
-{
- char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
- int limit, batchcount, shared, res;
- struct kmem_cache *cachep;
-
- if (count > MAX_SLABINFO_WRITE)
- return -EINVAL;
- if (copy_from_user(&kbuf, buffer, count))
- return -EFAULT;
- kbuf[MAX_SLABINFO_WRITE] = '\0';
-
- tmp = strchr(kbuf, ' ');
- if (!tmp)
- return -EINVAL;
- *tmp = '\0';
- tmp++;
- if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
- return -EINVAL;
-
- /* Find the cache in the chain of caches. */
- mutex_lock(&cache_chain_mutex);
- res = -EINVAL;
- list_for_each_entry(cachep, &cache_chain, next) {
- if (!strcmp(cachep->name, kbuf)) {
- if (limit < 1 || batchcount < 1 ||
- batchcount > limit || shared < 0) {
- res = 0;
- } else {
- res = do_tune_cpucache(cachep, limit,
- batchcount, shared);
- }
- break;
- }
- }
- mutex_unlock(&cache_chain_mutex);
- if (res >= 0)
- res = count;
- return res;
-}
-
-#ifdef CONFIG_DEBUG_SLAB_LEAK
-
-static void *leaks_start(struct seq_file *m, loff_t *pos)
-{
- mutex_lock(&cache_chain_mutex);
- return seq_list_start(&cache_chain, *pos);
-}
-
-static inline int add_caller(unsigned long *n, unsigned long v)
-{
- unsigned long *p;
- int l;
- if (!v)
- return 1;
- l = n[1];
- p = n + 2;
- while (l) {
- int i = l/2;
- unsigned long *q = p + 2 * i;
- if (*q == v) {
- q[1]++;
- return 1;
- }
- if (*q > v) {
- l = i;
- } else {
- p = q + 2;
- l -= i + 1;
- }
- }
- if (++n[1] == n[0])
- return 0;
- memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
- p[0] = v;
- p[1] = 1;
- return 1;
-}
-
-static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
-{
- void *p;
- int i;
- if (n[0] == n[1])
- return;
- for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
- if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
- continue;
- if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
- return;
- }
-}
-
-static void show_symbol(struct seq_file *m, unsigned long address)
-{
-#ifdef CONFIG_KALLSYMS
- unsigned long offset, size;
- char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
-
- if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
- seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
- if (modname[0])
- seq_printf(m, " [%s]", modname);
- return;
- }
-#endif
- seq_printf(m, "%p", (void *)address);
-}
-
-static int leaks_show(struct seq_file *m, void *p)
-{
- struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
- struct slab *slabp;
- struct kmem_list3 *l3;
- const char *name;
- unsigned long *n = m->private;
- int node;
- int i;
-
- if (!(cachep->flags & SLAB_STORE_USER))
- return 0;
- if (!(cachep->flags & SLAB_RED_ZONE))
- return 0;
-
- /* OK, we can do it */
-
- n[1] = 0;
-
- for_each_online_node(node) {
- l3 = cachep->nodelists[node];
- if (!l3)
- continue;
-
- check_irq_on();
- spin_lock_irq(&l3->list_lock);
-
- list_for_each_entry(slabp, &l3->slabs_full, list)
- handle_slab(n, cachep, slabp);
- list_for_each_entry(slabp, &l3->slabs_partial, list)
- handle_slab(n, cachep, slabp);
- spin_unlock_irq(&l3->list_lock);
- }
- name = cachep->name;
- if (n[0] == n[1]) {
- /* Increase the buffer size */
- mutex_unlock(&cache_chain_mutex);
- m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
- if (!m->private) {
- /* Too bad, we are really out */
- m->private = n;
- mutex_lock(&cache_chain_mutex);
- return -ENOMEM;
- }
- *(unsigned long *)m->private = n[0] * 2;
- kfree(n);
- mutex_lock(&cache_chain_mutex);
- /* Now make sure this entry will be retried */
- m->count = m->size;
- return 0;
- }
- for (i = 0; i < n[1]; i++) {
- seq_printf(m, "%s: %lu ", name, n[2*i+3]);
- show_symbol(m, n[2*i+2]);
- seq_putc(m, '\n');
- }
-
- return 0;
-}
-
-const struct seq_operations slabstats_op = {
- .start = leaks_start,
- .next = s_next,
- .stop = s_stop,
- .show = leaks_show,
-};
-#endif
-#endif
-
-/**
- * ksize - get the actual amount of memory allocated for a given object
- * @objp: Pointer to the object
- *
- * kmalloc may internally round up allocations and return more memory
- * than requested. ksize() can be used to determine the actual amount of
- * memory allocated. The caller may use this additional memory, even though
- * a smaller amount of memory was initially specified with the kmalloc call.
- * The caller must guarantee that objp points to a valid object previously
- * allocated with either kmalloc() or kmem_cache_alloc(). The object
- * must not be freed during the duration of the call.
- */
-size_t ksize(const void *objp)
-{
- if (unlikely(ZERO_OR_NULL_PTR(objp)))
- return 0;
-
- return obj_size(virt_to_cache(objp));
-}
Index: linux-2.6.22-rc6-mm1/lib/Kconfig.debug
===================================================================
--- linux-2.6.22-rc6-mm1.orig/lib/Kconfig.debug 2007-07-05 23:31:31.000000000 -0700
+++ linux-2.6.22-rc6-mm1/lib/Kconfig.debug 2007-07-05 23:31:45.000000000 -0700
@@ -141,23 +141,6 @@ config TIMER_STATS
(it defaults to deactivated on bootup and will only be activated
if some application like powertop activates it explicitly).
-config DEBUG_SLAB
- bool "Debug slab memory allocations"
- depends on DEBUG_KERNEL && SLAB
- help
- Say Y here to have the kernel do limited verification on memory
- allocation as well as poisoning memory on free to catch use of freed
- memory. This can make kmalloc/kfree-intensive workloads much slower.
-
-config DEBUG_SLAB_LEAK
- bool "Slab memory leak debugging"
- depends on DEBUG_SLAB
- default y
- help
- Enable /proc/slab_allocators - provides detailed information about
- which parts of the kernel are using slab objects. May be used for
- tracking memory leaks and for instrumenting memory usage.
-
config SLUB_DEBUG_ON
bool "SLUB debugging on by default"
depends on SLUB && SLUB_DEBUG
Index: linux-2.6.22-rc6-mm1/fs/proc/proc_misc.c
===================================================================
--- linux-2.6.22-rc6-mm1.orig/fs/proc/proc_misc.c 2007-07-05 23:37:36.000000000 -0700
+++ linux-2.6.22-rc6-mm1/fs/proc/proc_misc.c 2007-07-05 23:38:01.000000000 -0700
@@ -412,47 +412,6 @@ static const struct file_operations proc
};
#endif
-#ifdef CONFIG_SLAB
-static int slabinfo_open(struct inode *inode, struct file *file)
-{
- return seq_open(file, &slabinfo_op);
-}
-static const struct file_operations proc_slabinfo_operations = {
- .open = slabinfo_open,
- .read = seq_read,
- .write = slabinfo_write,
- .llseek = seq_lseek,
- .release = seq_release,
-};
-
-#ifdef CONFIG_DEBUG_SLAB_LEAK
-extern struct seq_operations slabstats_op;
-static int slabstats_open(struct inode *inode, struct file *file)
-{
- unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
- int ret = -ENOMEM;
- if (n) {
- ret = seq_open(file, &slabstats_op);
- if (!ret) {
- struct seq_file *m = file->private_data;
- *n = PAGE_SIZE / (2 * sizeof(unsigned long));
- m->private = n;
- n = NULL;
- }
- kfree(n);
- }
- return ret;
-}
-
-static const struct file_operations proc_slabstats_operations = {
- .open = slabstats_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = seq_release_private,
-};
-#endif
-#endif
-
static int show_stat(struct seq_file *p, void *v)
{
int i;
@@ -933,12 +892,6 @@ void __init proc_misc_init(void)
#endif
create_seq_entry("stat", 0, &proc_stat_operations);
create_seq_entry("interrupts", 0, &proc_interrupts_operations);
-#ifdef CONFIG_SLAB
- create_seq_entry("slabinfo",S_IWUSR|S_IRUGO,&proc_slabinfo_operations);
-#ifdef CONFIG_DEBUG_SLAB_LEAK
- create_seq_entry("slab_allocators", 0 ,&proc_slabstats_operations);
-#endif
-#endif
create_seq_entry("buddyinfo",S_IRUGO, &fragmentation_file_operations);
create_seq_entry("pagetypeinfo", S_IRUGO, &pagetypeinfo_file_ops);
create_seq_entry("vmstat",S_IRUGO, &proc_vmstat_file_operations);
--
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [email protected]
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
[Index of Archives]
[Kernel Newbies]
[Netfilter]
[Bugtraq]
[Photo]
[Stuff]
[Gimp]
[Yosemite News]
[MIPS Linux]
[ARM Linux]
[Linux Security]
[Linux RAID]
[Video 4 Linux]
[Linux for the blind]
[Linux Resources]