Next: glibc iconv Implementation, Previous: iconv Examples, Up: Generic Charset Conversion
iconv
ImplementationsThis is not really the place to discuss the iconv
implementation
of other systems but it is necessary to know a bit about them to write
portable programs. The above mentioned problems with the specification
of the iconv
functions can lead to portability issues.
The first thing to notice is that, due to the large number of character sets in use, it is certainly not practical to encode the conversions directly in the C library. Therefore, the conversion information must come from files outside the C library. This is usually done in one or both of the following ways:
This solution is problematic as it requires a great deal of effort to apply to all character sets (potentially an infinite set). The differences in the structure of the different character sets is so large that many different variants of the table-processing functions must be developed. In addition, the generic nature of these functions make them slower than specifically implemented functions.
This solution provides much more flexibility. The C library itself contains only very little code and therefore reduces the general memory footprint. Also, with a documented interface between the C library and the loadable modules it is possible for third parties to extend the set of available conversion modules. A drawback of this solution is that dynamic loading must be available.
Some implementations in commercial Unices implement a mixture of these possibilities; the majority implement only the second solution. Using loadable modules moves the code out of the library itself and keeps the door open for extensions and improvements, but this design is also limiting on some platforms since not many platforms support dynamic loading in statically linked programs. On platforms without this capability it is therefore not possible to use this interface in statically linked programs. The GNU C library has, on ELF platforms, no problems with dynamic loading in these situations; therefore, this point is moot. The danger is that one gets acquainted with this situation and forgets about the restrictions on other systems.
A second thing to know about other iconv
implementations is that
the number of available conversions is often very limited. Some
implementations provide, in the standard release (not special
international or developer releases), at most 100 to 200 conversion
possibilities. This does not mean 200 different character sets are
supported; for example, conversions from one character set to a set of 10
others might count as 10 conversions. Together with the other direction
this makes 20 conversion possibilities used up by one character set. One
can imagine the thin coverage these platform provide. Some Unix vendors
even provide only a handful of conversions, which renders them useless for
almost all uses.
This directly leads to a third and probably the most problematic point.
The way the iconv
conversion functions are implemented on all
known Unix systems and the availability of the conversion functions from
character set A to B and the conversion from
B to C does not imply that the
conversion from A to C is available.
This might not seem unreasonable and problematic at first, but it is a quite big problem as one will notice shortly after hitting it. To show the problem we assume to write a program that has to convert from A to C. A call like
cd = iconv_open ("C", "A");
fails according to the assumption above. But what does the program do now? The conversion is necessary; therefore, simply giving up is not an option.
This is a nuisance. The iconv
function should take care of this.
But how should the program proceed from here on? If it tries to convert
to character set B, first the two iconv_open
calls
cd1 = iconv_open ("B", "A");
and
cd2 = iconv_open ("C", "B");
will succeed, but how to find B?
Unfortunately, the answer is: there is no general solution. On some systems guessing might help. On those systems most character sets can convert to and from UTF-8 encoded ISO 10646 or Unicode text. Beside this only some very system-specific methods can help. Since the conversion functions come from loadable modules and these modules must be stored somewhere in the filesystem, one could try to find them and determine from the available file which conversions are available and whether there is an indirect route from A to C.
This example shows one of the design errors of iconv
mentioned
above. It should at least be possible to determine the list of available
conversion programmatically so that if iconv_open
says there is no
such conversion, one could make sure this also is true for indirect
routes.