Next: System Options, Up: System Configuration
The POSIX.1 and POSIX.2 standards specify a number of parameters that describe capacity limitations of the system. These limits can be fixed constants for a given operating system, or they can vary from machine to machine. For example, some limit values may be configurable by the system administrator, either at run time or by rebuilding the kernel, and this should not require recompiling application programs.
Each of the following limit parameters has a macro that is defined in
limits.h only if the system has a fixed, uniform limit for the
parameter in question. If the system allows different file systems or
files to have different limits, then the macro is undefined; use
sysconf
to find out the limit that applies at a particular time
on a particular machine. See Sysconf.
Each of these parameters also has another macro, with a name starting with `_POSIX', which gives the lowest value that the limit is allowed to have on any POSIX system. See Minimums.
If defined, the unvarying maximum combined length of the argv and environ arguments that can be passed to the
exec
functions.
If defined, the unvarying maximum number of processes that can exist with the same real user ID at any one time. In BSD and GNU, this is controlled by the
RLIMIT_NPROC
resource limit; see Limits on Resources.
If defined, the unvarying maximum number of files that a single process can have open simultaneously. In BSD and GNU, this is controlled by the
RLIMIT_NOFILE
resource limit; see Limits on Resources.
If defined, the unvarying maximum number of streams that a single process can have open simultaneously. See Opening Streams.
If defined, the unvarying maximum length of a time zone name. See Time Zone Functions.
These limit macros are always defined in limits.h.
The maximum number of supplementary group IDs that one process can have.
The value of this macro is actually a lower bound for the maximum. That is, you can count on being able to have that many supplementary group IDs, but a particular machine might let you have even more. You can use
sysconf
to see whether a particular machine will let you have more (see Sysconf).
The largest value that can fit in an object of type
ssize_t
. Effectively, this is the limit on the number of bytes that can be read or written in a single operation.This macro is defined in all POSIX systems because this limit is never configurable.
The largest number of repetitions you are guaranteed is allowed in the construct `\{min,max\}' in a regular expression.
The value of this macro is actually a lower bound for the maximum. That is, you can count on being able to have that many repetitions, but a particular machine might let you have even more. You can use
sysconf
to see whether a particular machine will let you have more (see Sysconf). And even the value thatsysconf
tells you is just a lower bound—larger values might work.This macro is defined in all POSIX.2 systems, because POSIX.2 says it should always be defined even if there is no specific imposed limit.