On Sunday November 4, [email protected] wrote:
> # ps auxww | grep D
> USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
> root 273 0.0 0.0 0 0 ? D Oct21 14:40 [pdflush]
> root 274 0.0 0.0 0 0 ? D Oct21 13:00 [pdflush]
>
> After several days/weeks, this is the second time this has happened, while
> doing regular file I/O (decompressing a file), everything on the device
> went into D-state.
At a guess (I haven't looked closely) I'd say it is the bug that was
meant to be fixed by
commit 4ae3f847e49e3787eca91bced31f8fd328d50496
except that patch applied badly and needed to be fixed with
the following patch (not in git yet).
These have been sent to stable@ and should be in the queue for 2.6.23.2
NeilBrown
Fix misapplied patch in raid5.c
commit 4ae3f847e49e3787eca91bced31f8fd328d50496 did not get applied
correctly, presumably due to substantial similarities between
handle_stripe5 and handle_stripe6.
This patch (with lots of context) moves the chunk of new code from
handle_stripe6 (where it isn't needed (yet)) to handle_stripe5.
Signed-off-by: Neil Brown <[email protected]>
### Diffstat output
./drivers/md/raid5.c | 14 +++++++-------
1 file changed, 7 insertions(+), 7 deletions(-)
diff .prev/drivers/md/raid5.c ./drivers/md/raid5.c
--- .prev/drivers/md/raid5.c 2007-11-02 12:10:49.000000000 +1100
+++ ./drivers/md/raid5.c 2007-11-02 12:25:31.000000000 +1100
@@ -2607,40 +2607,47 @@ static void handle_stripe5(struct stripe
struct bio *return_bi = NULL;
struct stripe_head_state s;
struct r5dev *dev;
unsigned long pending = 0;
memset(&s, 0, sizeof(s));
pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
"ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
atomic_read(&sh->count), sh->pd_idx,
sh->ops.pending, sh->ops.ack, sh->ops.complete);
spin_lock(&sh->lock);
clear_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
/* Now to look around and see what can be done */
+ /* clean-up completed biofill operations */
+ if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
+ clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
+ clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
+ clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
+ }
+
rcu_read_lock();
for (i=disks; i--; ) {
mdk_rdev_t *rdev;
struct r5dev *dev = &sh->dev[i];
clear_bit(R5_Insync, &dev->flags);
pr_debug("check %d: state 0x%lx toread %p read %p write %p "
"written %p\n", i, dev->flags, dev->toread, dev->read,
dev->towrite, dev->written);
/* maybe we can request a biofill operation
*
* new wantfill requests are only permitted while
* STRIPE_OP_BIOFILL is clear
*/
if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
!test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
set_bit(R5_Wantfill, &dev->flags);
/* now count some things */
@@ -2880,47 +2887,40 @@ static void handle_stripe6(struct stripe
struct stripe_head_state s;
struct r6_state r6s;
struct r5dev *dev, *pdev, *qdev;
r6s.qd_idx = raid6_next_disk(pd_idx, disks);
pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
"pd_idx=%d, qd_idx=%d\n",
(unsigned long long)sh->sector, sh->state,
atomic_read(&sh->count), pd_idx, r6s.qd_idx);
memset(&s, 0, sizeof(s));
spin_lock(&sh->lock);
clear_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
/* Now to look around and see what can be done */
- /* clean-up completed biofill operations */
- if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
- clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
- clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
- clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
- }
-
rcu_read_lock();
for (i=disks; i--; ) {
mdk_rdev_t *rdev;
dev = &sh->dev[i];
clear_bit(R5_Insync, &dev->flags);
pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
i, dev->flags, dev->toread, dev->towrite, dev->written);
/* maybe we can reply to a read */
if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
struct bio *rbi, *rbi2;
pr_debug("Return read for disc %d\n", i);
spin_lock_irq(&conf->device_lock);
rbi = dev->toread;
dev->toread = NULL;
if (test_and_clear_bit(R5_Overlap, &dev->flags))
wake_up(&conf->wait_for_overlap);
spin_unlock_irq(&conf->device_lock);
while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
copy_data(0, rbi, dev->page, dev->sector);
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [email protected]
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
[Index of Archives]
[Kernel Newbies]
[Netfilter]
[Bugtraq]
[Photo]
[Stuff]
[Gimp]
[Yosemite News]
[MIPS Linux]
[ARM Linux]
[Linux Security]
[Linux RAID]
[Video 4 Linux]
[Linux for the blind]
[Linux Resources]