On Thu, 16 Aug 2007, Satyam Sharma wrote:
> Hi Bill,
>
>
> On Wed, 15 Aug 2007, Bill Fink wrote:
>
> > On Wed, 15 Aug 2007, Satyam Sharma wrote:
> >
> > > (C)
> > > $ cat tp3.c
> > > int a;
> > >
> > > void func(void)
> > > {
> > > *(volatile int *)&a = 10;
> > > *(volatile int *)&a = 20;
> > > }
> > > $ gcc -Os -S tp3.c
> > > $ cat tp3.s
> > > ...
> > > movl $10, a
> > > movl $20, a
> > > ...
> >
> > I'm curious about one minor tangential point. Why, instead of:
> >
> > b = *(volatile int *)&a;
> >
> > why can't this just be expressed as:
> >
> > b = (volatile int)a;
> >
> > Isn't it the contents of a that's volatile, i.e. it's value can change
> > invisibly to the compiler, and that's why you want to force a read from
> > memory? Why do you need the "*(volatile int *)&" construct?
>
> "b = (volatile int)a;" doesn't help us because a cast to a qualified type
> has the same effect as a cast to an unqualified version of that type, as
> mentioned in 6.5.4:4 (footnote 86) of the standard. Note that "volatile"
> is a type-qualifier, not a type itself, so a cast of the _object_ itself
> to a qualified-type i.e. (volatile int) would not make the access itself
> volatile-qualified.
>
> To serve our purposes, it is necessary for us to take the address of this
> (non-volatile) object, cast the resulting _pointer_ to the corresponding
> volatile-qualified pointer-type, and then dereference it. This makes that
> particular _access_ be volatile-qualified, without the object itself being
> such. Also note that the (dereferenced) result is also a valid lvalue and
> hence can be used in "*(volatile int *)&a = b;" kind of construction
> (which we use for the atomic_set case).
Here, I should obviously admit that the semantics of *(volatile int *)&
aren't any neater or well-defined in the _language standard_ at all. The
standard does say (verbatim) "precisely what constitutes as access to
object of volatile-qualified type is implementation-defined", but GCC
does help us out here by doing the right thing. Accessing the non-volatile
object there using the volatile-qualified pointer-type cast makes GCC
treat the object stored at that memory address itself as if it were a
volatile object, thus making the access end up having what we're calling
as "volatility" semantics here.
Honestly, given such confusion, and the propensity of the "volatile"
type-qualifier keyword to be ill-defined (or at least poorly understood,
often inconsistently implemented), I'd (again) express my opinion that it
would be best to avoid its usage, given other alternatives do exist.
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [email protected]
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
[Index of Archives]
[Kernel Newbies]
[Netfilter]
[Bugtraq]
[Photo]
[Stuff]
[Gimp]
[Yosemite News]
[MIPS Linux]
[ARM Linux]
[Linux Security]
[Linux RAID]
[Video 4 Linux]
[Linux for the blind]
[Linux Resources]