Re: [PATCH] Document futex PI design

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Wed, 10 May 2006, Steven Rostedt wrote:
> I've noticed that since this document is rather large, it should have a
> copyright notice attached.  I would like to put it under the GFDL.  Should
> I send a new patch with the stated license, or should I just send a patch
> to the previous patch I sent.
>

Andrew,

Here's an update of the patch that I sent to document the PI design.  The
only difference is that I added a copyright notice at the top of the
document.  I'm sending a new patch instead of an add on, just to make it
easier for you to manage.  You only need to manage one patch for this
document and not two. (since I haven't had a report that you added this
patch into -mm yet).

Thanks,

-- Steve

Signed-off-by: Steven Rostedt <[email protected]>
Signed-off-by: Ingo Molnar <[email protected]>
Signed-off-by: Thomas Gleixner <[email protected]>

Index: linux-2.6.17-rc3-mm1/Documentation/rt-mutex-design.txt
===================================================================
--- /dev/null	1970-01-01 00:00:00.000000000 +0000
+++ linux-2.6.17-rc3-mm1/Documentation/rt-mutex-design.txt	2006-05-10 04:07:40.000000000 -0400
@@ -0,0 +1,768 @@
+#
+# This document is copyright 2006 by Steven Rostedt
+# It is licensed under the GFDL version 1.2 which can be
+# downloaded at http://www.kihontech.com/license/fdl.txt
+#
+
+RT-mutex implementation design
+------------------------------
+
+This document tries to describe the design of the rtmutex.c implementation.
+It doesn't describe the reasons why rtmutex.c exists. For that please see
+Documentation/rt-mutex.txt.  Although this document does explain problems
+that happen without this code, but that is in the concept to understand
+what the code actually is doing.
+
+The goal of this document is to help others understand the priority
+inheritance (PI) algorithm that is used, as well as reasons for the
+decisions that were made to implement PI in the manner that was done.
+
+
+Unbounded Priority Inversion
+----------------------------
+
+Priority inversion is when a lower priority process executes while a higher
+priority process wants to run.  This happens for several reasons, and
+most of the time it can't be helped.  Anytime a high priority process wants
+to use a resource that a lower priority process has (a mutex for example),
+the high priority process must wait until the lower priority process is done
+with the resource.  This is a priority inversion.  What we want to prevent
+is something called unbounded priority inversion.  That is when the high
+priority process is prevented from running by a lower priority process for
+an undetermined amount of time.
+
+The classic example of unbounded priority inversion is were you have three
+processes, lets call them processes A, B, and C, where A is the highest priority
+process, C is the lowest, and B is in between. A tries to grab a lock that C
+owns and must wait and lets C run to release the lock. But in the meantime,
+B executes, and since B is of a higher priority than C, it preempts C, but
+by doing so, it is in fact preempting A which is a higher priority process.
+Now there's no way of knowing how long A will be sleeping waiting for C
+to release the lock, because for all we know, B is a CPU hog and will
+never give C a chance to release the lock.  This is called unbounded priority
+inversion.
+
+Here's a little ascii art to show the problem.
+
+   grab lock L1 (owned by C)
+     |
+A ---+
+        C preempted by B
+          |
+C    +----+
+
+B         +-------->
+                B now keeps A from running.
+
+
+Priority Inheritance (PI)
+-------------------------
+
+There are several ways to solve this issue, but other ways are out of scope
+for this document.  Here we only discuss PI.
+
+PI is where a process inherits the priority of another process if the other
+process blocks on a lock owned by the current process.  To make this easier
+to understand, lets use the previous example, with processes A, B, and C again.
+
+This time, when A blocks on the lock owned by C, C would inherit the priority
+of A.  So now if B becomes runnable, it would not preempt C, since C now has
+the high priority of A.  As soon as C releases the lock, it loses its
+inherited priority, and A then can continue with the resource that C had.
+
+Terminology
+-----------
+
+Here I explain some terminology that is used in this document to help describe
+the design that is used to implement PI.
+
+PI chain - The PI chain is an ordered series of locks and processes that cause
+           processes to inherit priorities from a previous process that is
+	   blocked on one of its locks.  This is described in more detail
+	   later in this document.
+
+mutex    - In this document, to differentiate from locks that implement
+	   PI and spin locks that are used in the PI code, from now on
+	   the PI locks will be called a mutex.
+
+lock	 - In this document from now on, the term lock and spin lock will
+	   be synonymous.  These are locks that are used for SMP as well
+	   as turning off preemption to protect areas of code on SMP machines.
+
+spin lock - Same as lock above.
+
+waiter   - A waiter is a struct that is stored on the stack of a blocked
+	   process.  Since the scope of the waiter is within the code for
+	   a process being blocked on the mutex, it is fine to allocate
+	   the waiter on the process' stack (local variable).  This
+	   structure holds a pointer to the task, as well as the mutex that
+	   the task is blocked on.  It also has the plist node structures to
+	   place the task in the waiter_list of a mutex as well as the
+	   pi_list of a mutex owner task (described below).
+
+	   waiter is sometimes used in reference to the task that is waiting
+	   on a mutex. This is the same as waiter->task.
+
+waiters  - A list of processes that are blocked on a mutex.
+
+top waiter - The highest priority process waiting on a specific mutex.
+
+top pi waiter - The highest priority process waiting on one of the mutexes
+                that a specific process owns.
+
+Note:  task and process are used interchangeably in this document.  Mostly to
+       differentiate between two processes that are being described together.
+
+
+PI chain
+--------
+
+The PI chain is a list of processes and mutexes that may cause priority
+inheritance to take place.  Multiple chains may converge, but a chain
+would never diverge, since a process can't be blocked on more than one
+mutex at a time.
+
+Example:
+
+   Process:  A, B, C, D, E
+   Mutexes:  L1, L2, L3, L4
+
+   A owns: L1
+           B blocked on L1
+           B owns L2
+                  C blocked on L2
+                  C owns L3
+                         D blocked on L3
+                         D owns L4
+                                E blocked on L4
+
+The chain would be:
+
+   E->L4->D->L3->C->L2->B->L1->A
+
+To show where two chains merge, we could add another process F and
+another mutex L5 where B owns L5 and F is blocked on mutex L5
+
+The chain for F would be:
+
+   F->L5->B->L1->A
+
+Since a process may own more than one mutex, but never be blocked on more than
+one, the chains merge.
+
+Here we show both chains:
+
+   E->L4->D->L3->C->L2-+
+                       |
+                       +->B->L1->A
+                       |
+                 F->L5-+
+
+For PI to work, the processes at the right end of these chains (or we may
+also call the Top of the chain), must be equal to or higher in priority
+than the processes to the left or below in the chain.
+
+Also since a mutex may have more than one process blocked on it, we can
+have multiple chains merge at mutexes.  If we add another process G that is
+blocked on mutex L2.
+
+  G->L2->B->L1->A
+
+And once again, to show how this can grow I will show the merging chains
+again.
+
+   E->L4->D->L3->C-+
+                   +->L2-+
+                   |     |
+                 G-+     +->B->L1->A
+                         |
+                   F->L5-+
+
+
+Plist
+-----
+
+Before I go further and talk about how the PI chain is stored through lists
+on both mutexes and processes, I'll explain the plist.  This is similar to
+the struct list_head functionality that is already in the kernel.
+The implementation of plist is out of scope for this document, but it is
+very important to understand what it does.
+
+There are a few differences between plist and list, the most important one
+is that plist is a priority sorted link list.  This means that the priorities
+of the plist are sorted, such that it takes O(1) to retrieve the highest
+priority item in the list.  Obviously this is useful to store processes
+based on their priorities.
+
+Another difference, which is important for implementation, is that, unlike
+list, the head of the list is a different element than the nodes of a list.
+So the head of the list is declared as struct plist_head and nodes that will
+be added to the list are declared as struct plist_node.
+
+
+Mutex Waiter List
+-----------------
+
+Every mutex keeps track of all the waiters that are blocked on itself. The mutex
+has a plist to store these waiters by priority.  This list is protected by
+a spin lock that is located in the struct of the mutex. This lock is called
+wait_lock.  Since the modification of the waiter list is never done in
+interrupt context, the wait_lock can be taken without disabling interrupts.
+
+
+Task PI List
+------------
+
+To keep track of the PI chains, each process has its own PI list.  This is
+a list of all top waiters of the mutexes that are owned by the process.
+Note that this list only holds the top waiters and not all waiters that are
+blocked on mutexes owned by the process.
+
+The top of the task's PI list is always the highest priority task that
+is waiting on a mutex that is owned by the task.  So if the task has
+inherited a priority, it will always be the priority of the task that is
+at the top of this list.
+
+This list is stored in the task structure of a process as a plist called
+pi_list.  This list is protected by a spin lock also in the task structure,
+called pi_lock.  This lock may also be taken in interrupt context, so when
+locking the pi_lock, interrupts must be disabled.
+
+
+Depth of the PI Chain
+---------------------
+
+The maximum depth of the PI chain is not dynamic, and could actually be
+defined.  But is very complex to figure it out, since it depends on all
+the nesting of mutexes.  Lets look at the example where we have 3 mutexes,
+L1, L2, and L3, and four separate functions func1, func2, func3 and func4.
+The following shows a locking order of L1->L2->L3, but may not actually
+be directly nested that way.
+
+void func1 () {
+     mutex_lock(L1);
+
+     /* do anything */
+
+     mutex_unlock(L1);
+}
+
+void func2 () {
+     mutex_lock(L1);
+     mutex_lock(L2);
+
+     /* do something */
+
+     mutex_unlock(L2);
+     mutex_unlock(L1);
+}
+
+void func3 () {
+     mutex_lock(L2);
+     mutex_lock(L3);
+
+     /* do something else */
+
+     mutex_unlock(L3);
+     mutex_unlock(L2);
+}
+
+void func4 () {
+     mutex_lock(L3);
+
+     /* do something again */
+
+     mutex_unlock(L3);
+}
+
+Now we add 4 processes that run each of these functions separately.
+Processes A, B, C, and D which run functions func1, func2, func3 and func4
+respectively, and such that D runs first and A last.  With D being preempted
+in func4 in the "do something again" area, we have a locking that follows:
+
+D owns L3
+       C blocked on L3
+       C owns L2
+              B blocked on L2
+              B owns L1
+                     A blocked on L1
+
+And thus we have the chain A->L1->B->L2->C->L3->D.
+
+This gives us a PI depth of 4 (four processes), but looking at any of the
+functions individually, it seems as though they only have at most a locking
+depth of two.  So, although the locking depth is defined at compile time,
+it still is very difficult to find the possibilities of that depth.
+
+Now since mutexes can be defined by user-land applications, we don't want a DOS
+type of application that nests large amounts of mutexes to create a large
+PI chain, and have the code holding spin locks while looking at a large
+amount of data.  So to prevent this, the implementation not only implements
+a maximum lock depth, but also only holds at most two different locks at a
+time, as it walks the PI chain.  More about this below.
+
+
+Mutex owner and flags
+---------------------
+
+The mutex structure contains a pointer to the owner of the mutex.  If the
+mutex is not owned, this owner is set to NULL.  Since all architectures
+have the task structure on at least a four byte alignment (and if this is
+not true, the rtmutex.c code will be broken!), this allows for the least
+two significant bits to be used as flags.  This part is also described
+in Documentation/rt-mutex.txt, but will also be briefly descried here.
+
+Bit 0 is used as the "Pending Owner" flag.  This is described later.
+Bit 1 is used as the "Has Waiters" flags.  This is also described later
+  in more detail, but is set whenever there are waiters on a mutex.
+
+
+cmpxchg Tricks
+--------------
+
+Some architectures implement an atomic cmpxchg (Compare and Exchange).  This
+is used (when applicable) to keep the fast path of grabbing and releasing
+mutexes short.
+
+cmpxchg is basically the following function performed atomically:
+
+unsigned long _cmpxchg(unsigned long *A, unsigned long *B, unsigned long *C)
+{
+	unsigned long T = *A;
+	if (*A == *B) {
+		*A = *C;
+	}
+	return T;
+}
+#define cmpxchg(a,b,c) _cmpxchg(&a,&b,&c)
+
+This is really nice to have, since it allows you to only update a variable
+if the variable is what you expect it to be.  You know if it succeeded if
+the return value (the old value of A) is equal to B.
+
+The macro rt_mutex_cmpxchg is used to try to lock and unlock mutexes. If
+the architecture does not support CMPXCHG, then this macro is simply set
+to fail every time.  But if CMPXCHG is supported, then this will
+help out extremely to keep the fast path short.
+
+The use of rt_mutex_cmpxchg with the flags in the owner field help optimize
+the system for architectures that support it.  This will also be explained
+later in this document.
+
+
+Priority adjustments
+--------------------
+
+The implementation of the PI code in rtmutex.c has several places that a
+process must adjust its priority.  With the help of the pi_list of a
+process this is rather easy to know what needs to be adjusted.
+
+The functions implementing the task adjustments are rt_mutex_adjust_prio,
+__rt_mutex_adjust_prio (same as the former, but expects the task pi_lock
+to already be taken), rt_mutex_get_prio, and rt_mutex_setprio.
+
+rt_mutex_getprio and rt_mutex_setprio are only used in __rt_mutex_adjust_prio.
+
+rt_mutex_getprio returns the priority that the task should have.  Either the
+tasks own normal priority, or if a process of a higher priority is waiting on
+a mutex owned by the task, then that higher priority should be returned.
+Since the pi_list of a task holds an order by priority list of all the top
+waiters of all the mutexes that the task owns, rt_mutex_getprio simply needs
+to compare the top pi waiter to its own normal priority, and return the higher
+priority back.
+
+(Note:  if looking at the code, you will notice that the lower number of
+        prio is returned.  This is because the prio field in the task structure
+	is an inverse order of the actual priority.  So a "prio" of 5 is
+	of higher priority than a "prio" of 10).
+
+__rt_mutex_adjust_prio examines the result of rt_mutex_getprio, and if the
+result does not equal the task's current priority, then rt_mutex_setprio
+is called to adjust the priority of the task to the new priority.
+Note that rt_mutex_setprio is defined in kernel/sched.c to implement the
+actual change in priority.
+
+It is interesting to note that __rt_mutex_adjust_prio can either increase
+or decrease the priority of the task.  In the case that a higher priority
+process has just blocked on a mutex owned by the task, __rt_mutex_adjust_prio
+would increase/boost the task's priority.  But if a higher priority task
+were for some reason leave the mutex (timeout or signal), this same function
+would decrease/unboost the priority of the task.  That is because the pi_list
+always contains the highest priority task that is waiting on a mutex owned
+by the task, so we only need to compare the priority of that top pi waiter
+to the normal priority of the given task.
+
+
+High level overview of the PI chain walk
+----------------------------------------
+
+The PI chain walk is implemented by the function rt_mutex_adjust_prio_chain.
+
+The implementation has gone through several iterations, and has ended up
+with what we believe is the best.  It walks the PI chain by only grabbing
+at most two locks at a time, and is very efficient.
+
+The rt_mutex_adjust_prio_chain can be used to both boost processes to higher
+priorities, or sometimes it is used to lower priorities.
+
+The rt_mutex_adjust_prio_chain is called with a task to be checked for
+PI (de)boosting (the owner of a mutex that a process is blocking on), a flag to
+check for deadlocking, the mutex that the task owns, and a pointer to a waiter
+that is the process' waiter struct that is blocked on the mutex (although this
+parameter may be NULL for deboosting).
+
+For this explanation, I will not mention deadlock detection. This explanation
+will try to stay at a high level.
+
+When this function is called, there are no locks held.  That also means
+that the state of the owner and lock can change when entered into this function.
+
+Before this function is called, the task has already had rt_mutex_adjust_prio
+performed on it.  This means that the task is set to the priority that it
+should be at, but the plist nodes of the task's waiter have not been updated
+with the new priorities, and that this task may not be in the proper locations
+in the pi_lists and wait_lists that the task is blocked on.  This function
+solves all that.
+
+A loop is entered, where task is the owner to be checked for PI changes that
+was passed by parameter (for the first iteration).  The pi_lock of this task is
+taken to prevent any more changes to the pi_list of the task.  This also
+prevents new tasks from completing the blocking on a mutex that is owned by this
+task.
+
+If the task is not blocked on a mutex then the loop is exited.  We are at
+the top of the PI chain.
+
+A check is now done to see if the original waiter (the process that is blocked
+on the current mutex), is the top pi waiter of the task.  That is, is this
+waiter on the top of the task's pi_list.  If it is not, it either means that
+there is another process higher in priority that is blocked on one of the
+mutexes that the task owns, or that the waiter has just woken up via a signal
+or timeout and has left the PI chain.  In either case, the loop is exited, since
+we don't need to do any more changes to the priority of the current task, or any
+task that owns a mutex that this current task is waiting on.  A priority chain
+walk is only needed when a new top pi waiter is made to a task.
+
+The next check sees if the task's waiter plist node has the priority equal to
+the priority the task is set at.  If they are equal, then we are done with
+the loop.  Remember that the function started with the priority of the
+task adjusted, but the plist nodes that hold the task in other processes
+pi_lists have not been adjusted.
+
+Next, we look at the mutex that the task is blocked on. The mutex's wait_lock
+is taken.  This is done by a spin_trylock, because the locking order of the
+pi_lock and wait_lock goes in the opposite direction. If we fail to grab the
+lock, the pi_lock is released, and we restart the loop.
+
+Now that we have both the pi_lock of the task, as well as the wait_lock of
+the mutex the task is blocked on, we update the task's waiter's plist node
+that is located on the mutex's wait_list.
+
+Now we release the pi_lock of the task.
+
+Next the owner of the mutex has its pi_lock taken, so we can update the
+task's entry in the owner's pi_list.  If the task is the highest priority
+process on the mutex's wait_list, then we remove the previous top waiter
+from the owner's pi_list, and replace it with the task.
+
+Note: It is possible that the task was the current top waiter on the mutex
+      in which case, the task is not yet on the pi_list of the waiter.  This
+      is OK, since plist_del does nothing if the plist node is not on any
+      list.
+
+If the task was not the top waiter of the mutex, but it was before we
+did the priority updates, that means we are deboosting/lowering the
+task.  In this case, the task is removed from the pi_list of the owner,
+and the new top waiter is added.
+
+Lastly, we unlock both the pi_lock of the task, as well as the mutex's
+wait_lock, and continue the loop again, this time the task is the owner
+of the previous mutex.
+
+
+Note: One might think that the owner of this mutex might have changed
+      since we just grab the mutex's wait_lock. And one could be right.
+      The important thing to remember, is that the owner could not have
+      become the task that is being processed in the PI chain, since
+      we have taken that task's pi_lock at the beginning of the loop.
+      So as long as there is an owner of this mutex, that is not the same
+      process as the tasked being worked on, we are OK.
+
+      Looking closely at the code, one might be confused.  The check for the
+      end of the PI chain is when the task isn't blocked on anything or the
+      task's waiter structure "task" element is NULL.  This check is
+      protected only by the task's pi_lock.  But the code to unlock the mutex
+      sets the task's waiter structure "task" element to NULL with only
+      the protection of the mutex's wait_lock, which was not taken yet.
+      Isn't this a race condition if the task becomes the new owner?
+
+      The answer is No!  The trick is the spin_trylock of the mutex's
+      wait_lock.  If we fail that lock, we release the pi_lock of the
+      task and continue the loop, doing the end of PI chain check again.
+
+      In the code to release the lock, the wait_lock of the mutex is held
+      the entire time, and it is not let go when we grab the pi_lock of the
+      new owner of the mutex.  So if the switch of a new owner were to happen
+      after the check for end of the PI chain and the grabbing of the
+      wait_lock, the unlocking code would spin on the new owner's pi_lock
+      but never give up the wait_lock.  So the PI chain loop is guaranteed to
+      fail the spin_trylock on the wait_lock, release the pi_lock, and
+      try again.
+
+      If you don't quite understand the above, that's OK. You don't have to,
+      unless you really want to make a proof out of it ;)
+
+
+Pending Owners and Lock stealing
+--------------------------------
+
+One of the flags in the owner field of the mutex structure is "Pending Owner".
+What this means is that an owner was chosen by the process releasing the
+mutex, but that owner has yet to wake up and actually take the mutex.
+
+Why is this important?  Why can't we just give the mutex to another process
+and be done with it?
+
+The PI code is to help with real-time processes, and to let the highest
+priority process run as long as possible with little latencies and delays.
+If a high priority process owns a mutex that a lower priority process is
+blocked on, when the mutex is released it would be given to the lower priority
+process.  What if the higher priority process wants to take that mutex again.
+The high priority process would fail to take that mutex that it just gave up
+and it would need to boost the lower priority process to run with full
+latency of that critical section (since the low priority process just entered
+it).
+
+There's no reason a high priority process that gives up a mutex, should be
+penalized if it tries to take that mutex again.  If the new owner of the
+mutex has not woken up yet, there's no reason that the higher priority process
+could not take that mutex away.
+
+To solve this, we introduced Pending Ownership and Lock Stealing.  When a
+new process is given a mutex that it was blocked on, it is only given
+pending ownership.  This means that it's the new owner, unless a higher
+priority process comes in and tries to grab that mutex.  If a higher priority
+process does come along and wants that mutex, we let the higher priority
+process "steal" the mutex from the pending owner (only if it is still pending)
+and continue with the mutex.
+
+
+Taking of a mutex (The walk through)
+------------------------------------
+
+OK, now lets take a look at the detailed walk through of what happens when
+taking a mutex.
+
+The first thing that is tried is the fast taking of the mutex.  This is
+done when we have CMPXCHG enabled (otherwise the fast taking automatically
+fails).  Only when the owner field of the mutex is NULL can the lock be
+taken with the CMPXCHG and nothing else needs to be done.
+
+If there is contention on the lock, whether it is owned or pending owner
+we go about the slow path (rt_mutex_slowlock).
+
+The slow path function is where the task's waiter structure is created on
+the stack.  This is because the waiter structure is only needed for the
+scope of this function.  The waiter structure holds the nodes to store
+the task on the wait_list of the mutex, and if need be, the pi_list of
+the owner.
+
+The wait_lock of the mutex is taken since the slow path of unlocking the
+mutex also takes this lock.
+
+We then call try_to_take_rt_mutex.  This is where the architecture that
+does not implement CMPXCHG would always grab the lock (if there's no
+contention).
+
+try_to_take_rt_mutex is used every time the task tries to grab a mutex in the
+slow path.  The first thing that is done here is an atomic setting of
+the "Has Waiters" flag of the mutex's owner field.  Yes, this could really
+be false, because if the the mutex has no owner, there are no waiters and
+the current task also won't have any waiters.  But we don't have the lock
+yet, so we assume we are going to be a waiter.  The reason for this is to
+play nice for those architectures that do have CMPXCHG.  By setting this flag
+now, the owner of the mutex can't release the mutex without going into the
+slow unlock path, and it would then need to grab the wait_lock, which this
+code currently holds.  So setting the "Has Waiters" flag forces the owner
+to synchronize with this code.
+
+Now that we know that we can't have any races with the owner releasing the
+mutex, we check to see if we can take the ownership.  This is done if the
+mutex doesn't have a owner, or if we can steal the mutex from a pending
+owner.  Let's look at the situations we have here.
+
+1) Has owner that is pending
+----------------------------
+The mutex has a owner, but it hasn't woken up and the mutex flag
+"Pending Owner" is set.  The first check is to see if the owner isn't the
+current task.  This is because this function is also used for the pending
+owner to grab the mutex.  When a pending owner wakes up, it checks to see
+if it can take the mutex, and this is done if the owner is already set to
+itself.  If so, we succeed and leave the function, clearing the "Pending
+Owner" bit.
+
+If the pending owner is not current, we check to see if the current priority is
+higher than the pending owner.  If not, we fail the function and return.
+
+There's also something special about a pending owner.  That is a pending owner
+is never blocked on a mutex.  So there is no PI chain to worry about.  It also
+means that if the mutex doesn't have any waiters, there's no accounting needed
+to update the pending owner's pi_list, since we only worry about processes
+blocked on the current mutex.
+
+If there is waiters on this mutex, and we just stole the ownership, we need
+to take the top waiter, remove it from the pi_list of the pending owner, and
+add it to the current pi_list.  Note that at this moment, the pending owner
+is no longer on the list of waiters.  This is fine, since the pending owner
+would add itself back when it realizes that it had the ownership stolen
+from itself.
+
+2) No owner
+-----------
+
+If there is no owner (or we successfully stole the lock), we set the owner
+of the mutex to current, and set the flag of "Has Waiters" if the current
+mutex actually has waiters, or we clear the flag if it doesn't.  See, it was
+OK that we set that flag early, since now it is cleared.
+
+3) Failed to grab ownership
+---------------------------
+
+The most interesting case is when we fail to take ownership. This means that
+there exists an owner, or there's a pending owner with equal or higher
+priority than the current task.
+
+We'll continue on the failed case.
+
+If the mutex has a timeout, we set up a timer to go off to break us out
+of this mutex if we failed to get it after a specified amount of time.
+
+Now we enter a loop that will continue to try to take ownership of the mutex, or
+fail from a timeout or signal.
+
+Once again we try to take the mutex.  This will usually fail the first time
+in the loop, but not usually the second.
+
+If the mutex is TASK_INTERRUPTIBLE a check for signals and timeout is done
+here.
+
+The waiter structure has a "task" field that points to the task that is blocked
+on the mutex.  This field can be NULL the first time it goes through the loop
+or if the task is a pending owner and had it's mutex stolen.  If the "task"
+field is NULL then we need to set up the accounting for it.
+
+Task blocks on mutex
+--------------------
+
+The accounting of a mutex and process is done with the waiter structure of
+the process.  The "task" field is set to the process, and the "lock" field
+to the mutex.  The plist nodes are initialized to the processes current
+priority.
+
+Since the wait_lock was taken at the entry of the slow lock, we can safely
+add the waiter to the wait_list.  If the current process is the highest
+priority process currently waiting on this mutex, then we remove the
+previous top waiter process (if it exists) from the pi_list of the owner,
+and add the current process to that list.  Since the pi_list of the owner
+has changed, we call rt_mutex_adjust_prio on the owner to see if the owner
+should adjust it's priority accordingly.
+
+If the owner is also blocked on a lock, and had it's pi_list changed
+(or deadlock checking is on), we unlock the wait_lock of the mutex and go ahead
+and run rt_mutex_adjust_prio_chain on the owner, as described earlier.
+
+Now all locks are released, and if the current process is still blocked on a
+mutex (waiter "task" field is not NULL), then we go to sleep (call schedule).
+
+Waking up in the loop
+---------------------
+
+The schedule can then wake up for a few reasons.
+  1) we were given pending ownership of the mutex.
+  2) we received a signal and was TASK_INTERRUPTIBLE
+  3) we had a timeout and was TASK_INTERRUPTIBLE
+
+In any of these cases, we continue the loop and once again try to grab the
+ownership of the mutex.  If we succeed, we exit the loop, otherwise we continue
+and on signal and timeout, will exit the loop, or if we had the mutex stolen
+we just simply add ourselves back on the lists and go back to sleep.
+
+Note: For various reasons, because of timeout and signals, the steal mutex
+      algorithm needs to be careful. This is because the current process is
+      still on the wait_list. And because of dynamic changing of priorities,
+      especially on SCHED_OTHER tasks, the current process can be the
+      highest priority task on the wait_list.
+
+Failed to get mutex on Timeout or Signal
+----------------------------------------
+
+If a timeout or signal occurred, the waiter's "task" field would not be
+NULL and the task needs to be taken off the wait_list of the mutex and perhaps
+pi_list of the owner.  If this process was a high priority process, then
+the rt_mutex_adjust_prio_chain needs to be executed again on the owner,
+but this time it will be lowering the priorities.
+
+
+Unlocking the Mutex
+-------------------
+
+The unlocking of a mutex also has a fast path for those architectures with
+CMPXCHG.  Since the taking of a mutex on contention always sets the
+"Has Waiters" flag of the mutex's owner, we use this to know if we need to
+take the slow path when unlocking the mutex.  If the mutex doesn't have any
+waiters, the owner field of the mutex would equal the current process and
+the mutex can be unlocked by just replacing the owner field with NULL.
+
+If the owner field has the "Has Waiters" bit set, (or CMPXCHG is not available)
+the slow unlock path is taken.
+
+The first thing done in the slow unlock path is to take the wait_lock of the
+mutex.  This synchronizes the locking and unlocking of the mutex.
+
+A check is made to see if the mutex has waiters or not, this can be the case for
+architectures without CMPXCHG, or a waiter had hit the timeout or signal and
+removed itself between the time the "Has Waiters" bit was checked and this
+check.  If there are no waiters than the mutex owner field is set to NULL,
+the wait_lock is released and nothing more is needed.
+
+If there are waiters, then we need to wake one up and give that waiter
+pending ownership.
+
+On the wake up code, the pi_lock of the current owner is taken.  The top
+waiter of the lock is found and removed from the wait_list of the mutex
+as well as the pi_list of the current owner.  The task field of the new
+pending owner's waiter structure is set to NULL, and the owner field of the
+mutex is set to the new owner with the "Pending Owner" bit set, as well
+as the "Has Waiters" bit if there still are other processes blocked on the
+mutex.
+
+The pi_lock of the previous owner is released, and the new pending owner's
+pi_lock is taken.  Remember that this is the trick to prevent the race
+condition in rt_mutex_adjust_prio_chain from adding itself as a waiter
+on the mutex.
+
+We now clear the "pi_blocked_on" field of the new pending owner, and if
+the mutex still has waiters pending, we add the new top waiter to the pi_list
+of the pending owner.
+
+Finally we unlock the pi_lock of the pending owner, and wake it up.
+
+
+Contact
+-------
+
+For updates on this document, please email Steven Rostedt <[email protected]>
+
+
+Credits
+-------
+
+Author:  Steven Rostedt <[email protected]>
+
+Reviewers:  Ingo Molnar, Thomas Gleixner, and Thomas Duetsch.
+
+
+Updates
+-------
+
+This document was originally written for 2.6.17-rc3-mm1
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [email protected]
More majordomo info at  http://vger.kernel.org/majordomo-info.html
Please read the FAQ at  http://www.tux.org/lkml/

[Index of Archives]     [Kernel Newbies]     [Netfilter]     [Bugtraq]     [Photo]     [Stuff]     [Gimp]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Video 4 Linux]     [Linux for the blind]     [Linux Resources]
  Powered by Linux