The attached patch documents the Linux kernel's memory barriers.
I've updated it from the comments I've been given.
The per-arch notes sections are gone because it's clear that there are so many
exceptions, that it's not worth having them.
I've added a list of references to other documents.
I've tried to get rid of the concept of memory accesses appearing on the bus;
what matters is apparent behaviour with respect to other observers in the
system.
Interrupts barrier effects are now considered to be non-existent. They may be
there, but you may not rely on them.
I've added a couple of definition sections at the top of the document: one to
specify the minimum execution model that may be assumed, the other to specify
what this document refers to by the term "memory".
I've made greater mention of the use of mmiowb().
I've adjusted the way in which caches are described, and described the fun
that can be had with cache coherence maintenance being unordered and data
dependency not being necessarily implicit.
I've described (smp_)read_barrier_depends().
I've rearranged the order of the sections, so that memory barriers are
discussed in abstract first, and then described the memory barrier facilities
available on Linux, before going on to more real-world discussions and examples.
I've added information about the lack of memory barriering effects with atomic
ops and bitops.
I've added information about control dependencies.
Signed-Off-By: David Howells <[email protected]>
---
warthog>diffstat -p1 /tmp/mb.diff
Documentation/memory-barriers.txt | 1639 ++++++++++++++++++++++++++++++++++++++
1 files changed, 1639 insertions(+)
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
new file mode 100644
index 0000000..caa2781
--- /dev/null
+++ b/Documentation/memory-barriers.txt
@@ -0,0 +1,1639 @@
+ ============================
+ LINUX KERNEL MEMORY BARRIERS
+ ============================
+
+Contents:
+
+ (*) Abstract memory access model.
+
+ - Device operations.
+ - Guarantees.
+
+ (*) What are memory barriers?
+
+ - Varieties of memory barrier.
+ - What can't be assumed about memory barriers?
+ - Data dependency barriers.
+ - Control dependencies.
+ - SMP barrier pairing.
+
+ (*) Explicit kernel barriers.
+
+ - Compiler barrier.
+ - The CPU memory barriers.
+ - MMIO write barrier.
+
+ (*) Implicit kernel memory barriers.
+
+ - Locking functions.
+ - Interrupt disabling functions.
+ - Miscellaneous functions.
+
+ (*) Inter-CPU locking barrier effects.
+
+ - Locks vs memory accesses.
+ - Locks vs I/O accesses.
+
+ (*) Where are memory barriers needed?
+
+ - Interprocessor interaction.
+ - Atomic operations.
+ - Accessing devices.
+ - Interrupts.
+
+ (*) Kernel I/O barrier effects.
+
+ (*) Assumed minimum execution ordering model.
+
+ (*) The effects of the cpu cache.
+
+ - Cache coherency.
+ - Cache coherency vs DMA.
+ - Cache coherency vs MMIO.
+
+ (*) The things CPUs get up to.
+
+ - And then there's the Alpha.
+
+ (*) References.
+
+
+============================
+ABSTRACT MEMORY ACCESS MODEL
+============================
+
+Consider the following abstract model of the system:
+
+ : :
+ : :
+ : :
+ +-------+ : +--------+ : +-------+
+ | | : | | : | |
+ | | : | | : | |
+ | CPU 1 |<----->| Memory |<----->| CPU 2 |
+ | | : | | : | |
+ | | : | | : | |
+ +-------+ : +--------+ : +-------+
+ ^ : ^ : ^
+ | : | : |
+ | : | : |
+ | : v : |
+ | : +--------+ : |
+ | : | | : |
+ | : | | : |
+ +---------->| Device |<----------+
+ : | | :
+ : | | :
+ : +--------+ :
+ : :
+
+Each CPU executes a program that generates memory access operations. In the
+abstract CPU, memory operation ordering is very relaxed, and a CPU may actually
+perform the memory operations in any order it likes, provided program causality
+appears to be maintained. Similarly, the compiler may also arrange the
+instructions it emits in any order it likes, provided it doesn't affect the
+apparent operation of the program.
+
+So in the above diagram, the effects of the memory operations performed by a
+CPU are perceived by the rest of the system as the operations cross the
+interface between the CPU and rest of the system (the dotted lines).
+
+
+For example, consider the following sequence of events:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { A == 1; B == 2 }
+ A = 3; x = A;
+ B = 4; y = B;
+
+The set of accesses as seen by the memory system in the middle can be arranged
+in 24 different combinations:
+
+ STORE A=3, STORE B=4, x=LOAD A->3, y=LOAD B->4
+ STORE A=3, STORE B=4, y=LOAD B->4, x=LOAD A->3
+ STORE A=3, x=LOAD A->3, STORE B=4, y=LOAD B->4
+ STORE A=3, x=LOAD A->3, y=LOAD B->2, STORE B=4
+ STORE A=3, y=LOAD B->2, STORE B=4, x=LOAD A->3
+ STORE A=3, y=LOAD B->2, x=LOAD A->3, STORE B=4
+ STORE B=4, STORE A=3, x=LOAD A->3, y=LOAD B->4
+ STORE B=4, ...
+ ...
+
+and can thus result in four different combinations of values:
+
+ x == 1, y == 2
+ x == 1, y == 4
+ x == 3, y == 2
+ x == 3, y == 4
+
+
+Furthermore, the stores committed by a CPU to the memory system may not be
+perceived by the loads made by another CPU in the same order as the stores were
+committed.
+
+
+As a further example, consider this sequence of events:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { A == 1, B == 2, C = 3, P == &A, Q == &C }
+ B = 4; Q = P;
+ P = &B D = *Q;
+
+There is an obvious data dependency here, as the value loaded into D depends on
+the address retrieved from P by CPU 2. At the end of the sequence, any of the
+following results are possible:
+
+ (Q == &A) and (D == 1)
+ (Q == &B) and (D == 2)
+ (Q == &B) and (D == 4)
+
+Note that CPU 2 will never try and load C into D because the CPU will load P
+into Q before issuing the load of *Q.
+
+
+DEVICE OPERATIONS
+-----------------
+
+Some devices present their control interfaces as collections of memory
+locations, but the order in which the control registers are accessed is very
+important. For instance, imagine an ethernet card with a set of internal
+registers that are accessed through an address port register (A) and a data
+port register (D). To read internal register 5, the following code might then
+be used:
+
+ *A = 5;
+ x = *D;
+
+but this might show up as either of the following two sequences:
+
+ STORE *A = 5, x = LOAD *D
+ x = LOAD *D, STORE *A = 5
+
+the second of which will almost certainly result in a malfunction, since it set
+the address _after_ attempting to read the register.
+
+
+GUARANTEES
+----------
+
+There are some minimal guarantees that may be expected of a CPU:
+
+ (*) On any given CPU, dependent memory accesses will be issued in order, with
+ respect to itself. This means that for:
+
+ Q = P; D = *Q;
+
+ the CPU will issue the following memory operations:
+
+ Q = LOAD P, D = LOAD *Q
+
+ and always in that order.
+
+ (*) Overlapping loads and stores within a particular CPU will appear to be
+ ordered within that CPU. This means that for:
+
+ a = *X; *X = b;
+
+ the CPU will only issue the following sequence of memory operations:
+
+ a = LOAD *X, STORE *X = b
+
+ And for:
+
+ *X = c; d = *X;
+
+ the CPU will only issue:
+
+ STORE *X = c, d = LOAD *X
+
+ (Loads and stores overlap if they are targetted at overlapping pieces of
+ memory).
+
+And there are a number of things that _must_ or _must_not_ be assumed:
+
+ (*) It must not be assumed that independent loads and stores will be issued in
+ the order given. This means that for:
+
+ X = *A; Y = *B; *D = Z;
+
+ we may get any of the following sequences:
+
+ X = LOAD *A, Y = LOAD *B, STORE *D = Z
+ X = LOAD *A, STORE *D = Z, Y = LOAD *B
+ Y = LOAD *B, X = LOAD *A, STORE *D = Z
+ Y = LOAD *B, STORE *D = Z, X = LOAD *A
+ STORE *D = Z, X = LOAD *A, Y = LOAD *B
+ STORE *D = Z, Y = LOAD *B, X = LOAD *A
+
+ (*) It must be assumed that overlapping memory accesses may be merged or
+ discarded. This means that for:
+
+ X = *A; Y = *(A + 4);
+
+ we may get any one of the following sequences:
+
+ X = LOAD *A; Y = LOAD *(A + 4);
+ Y = LOAD *(A + 4); X = LOAD *A;
+ {X, Y} = LOAD {*A, *(A + 4) };
+
+ And for:
+
+ *A = X; Y = *A;
+
+ we may get either of:
+
+ STORE *A = X; Y = LOAD *A;
+ STORE *A = Y;
+
+
+=========================
+WHAT ARE MEMORY BARRIERS?
+=========================
+
+As can be seen above, independent memory operations are effectively performed
+in random order, but this can be a problem for CPU-CPU interaction and for I/O.
+What is required is some way of intervening to instruct the compiler and the
+CPU to restrict the order.
+
+Memory barriers are such interventions. They impose a perceived partial
+ordering between the memory operations specified either side of the barrier.
+They request that the sequence of memory events generated appears to other
+parts of the system as if the barrier is effective on that CPU.
+
+
+VARIETIES OF MEMORY BARRIER
+---------------------------
+
+Memory barriers come in four basic varieties:
+
+ (1) Read (or load) memory barriers.
+
+ A read memory barrier gives a guarantee that all the LOAD operations
+ specified before the barrier will appear to happen before all the LOAD
+ operations specified after the barrier with respect to the other
+ components of the system.
+
+ A read barrier is a partial ordering on loads only; it is not required to
+ have any effect on stores.
+
+ A read barrier guarantees that the issuing CPU's perception of all the
+ other stores in that system is up to date by the time the next load goes
+ from that CPU to the rest of the system.
+
+ Read memory barriers imply data dependency barriers, and so can substitute
+ for them.
+
+ (2) Write (or store) memory barriers.
+
+ A write memory barrier gives a guarantee that all the STORE operations
+ specified before the barrier will appear to happen before all the STORE
+ operations specified after the barrier with respect to the other
+ components of the system.
+
+ A write barrier is a partial ordering on stores only; it is not required
+ to have any effect on loads.
+
+ (3) General memory barriers.
+
+ A general memory barrier is a combination of both a read memory barrier
+ and a write memory barrier. It is a partial ordering over both loads and
+ stores.
+
+ General memory barriers imply both read and write memory barriers, and so
+ can substitute for either.
+
+ (4) Data dependency barriers.
+
+ A data dependency barrier is a weaker form of read barrier. In the case
+ where two loads are performed such that the second depends on the result
+ of the first (eg: the first load retrieves the address to which the second
+ load will be directed), a data dependency barrier would be required to
+ make sure that the target of the second load is updated before the address
+ obtained by the first load is accessed.
+
+ A data dependency barrier is a partial ordering on interdependent loads
+ only; it is not required to have any effect on stores, independent loads
+ or overlapping loads.
+
+ A data dependency barrier guarantees that the issuing CPU's perception of
+ all the other stores in that system is up to date by the time the next
+ load goes from that CPU to the rest of the system.
+
+ [!] Note that the first load really has to have a _data_ dependency, not a
+ control dependency. If the address for the second load is dependent on
+ the first load, but the dependency is through a conditional rather than
+ actually loading the address itself, then it's a _control_ dependency and
+ a full read barrier or better is required. See the "Control dependencies"
+ subsection for more information.
+
+Plus two common implicit varieties:
+
+ (5) LOCK operations.
+
+ This acts as a one-way permeable barrier. It guarantees that all memory
+ operations after the LOCK operation will appear to happen after the LOCK
+ operation with respect to the other components of the system.
+
+ Memory operations that occur before a LOCK operation may appear to happen
+ after it completes.
+
+ (6) UNLOCK operations.
+
+ This also acts as a one-way permeable barrier. It guarantees that all
+ memory operations before the UNLOCK operation will appear to happen before
+ the UNLOCK operation with respect to the other components of the system.
+
+ Memory operations that occur after an UNLOCK operation may appear to
+ happen before it completes.
+
+ LOCK and UNLOCK operations are guaranteed to appear with respect to each
+ other strictly in the order specified.
+
+
+Memory barriers are only required where there's a possibility of interaction
+between two CPUs or between a CPU and a device. If it can be guaranteed that
+there won't be any such interaction in any particular piece of code, then
+memory barriers are unnecessary in that piece of code.
+
+
+Note that these are the _minimum_ guarantees. Different architectures may give
+more substantial guarantees, but they may _not_ be relied upon outside of arch
+specific code.
+
+
+WHAT CAN'T BE ASSUMED ABOUT MEMORY BARRIERS?
+--------------------------------------------
+
+There are certain things that the Linux kernel memory barriers do not guarantee:
+
+ (*) There is no guarantee that any of the memory accesses specified before a
+ memory barrier will be _complete_ by the completion of a memory barrier
+ instruction; the barrier can be considered to draw a line in that CPU's
+ access queue that accesses of the appropriate type may not cross.
+
+ (*) There is no guarantee that issuing a memory barrier on one CPU will have
+ any direct effect on another CPU or any other hardware in the system. The
+ indirect effect will be the order in which the second CPU sees the effects
+ of the first CPU's accesses occur.
+
+ (*) There is no guarantee that the a CPU will see the correct order of effects
+ from a second CPU's accesses, even _if_ the second CPU uses a memory
+ barrier, unless the first CPU _also_ uses a matching memory barrier (see
+ the subsection on "SMP Barrier Pairing").
+
+ (*) There is no guarantee that some intervening piece of off-the-CPU
+ hardware[*] will not reorder the memory accesses. CPU cache coherency
+ mechanisms should propagate the indirect effects of a memory barrier
+ between CPUs, but may not do so in order.
+
+ [*] For information on bus mastering DMA and coherency please read:
+
+ Documentation/pci.txt
+ Documentation/DMA-mapping.txt
+ Documentation/DMA-API.txt
+
+
+DATA DEPENDENCY BARRIERS
+------------------------
+
+The usage requirements of data dependency barriers are a little subtle, and
+it's not always obvious that they're needed. To illustrate, consider the
+following sequence of events:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { A == 1, B == 2, C = 3, P == &A, Q == &C }
+ B = 4;
+ <write barrier>
+ P = &B
+ Q = P;
+ D = *Q;
+
+There's a clear data dependency here, and it would seem that by the end of the
+sequence, Q must be either &A or &B, and that:
+
+ (Q == &A) implies (D == 1)
+ (Q == &B) implies (D == 4)
+
+But! CPU 2's perception of P may be updated _before_ its perception of B, thus
+leading to the following situation:
+
+ (Q == &B) and (D == 2) ????
+
+Whilst this may seem like a failure of coherency or causality maintenance, it
+isn't, and this behaviour can be observed on certain real CPUs (such as the DEC
+Alpha).
+
+To deal with this, a data dependency barrier must be inserted between the
+address load and the data load:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { A == 1, B == 2, C = 3, P == &A, Q == &C }
+ B = 4;
+ <write barrier>
+ P = &B
+ Q = P;
+ <data dependency barrier>
+ D = *Q;
+
+This enforces the occurrence of one of the two implications, and prevents the
+third possibility from arising.
+
+
+Another example of where data dependency barriers might by required is where a
+number is read from memory and then used to calculate the index for an array
+access:
+
+ CPU 1 CPU 2
+ =============== ===============
+ { M[0] == 1, M[1] == 2, M[3] = 3, P == 0, Q == 3 }
+ M[1] = 4;
+ <write barrier>
+ P = 1
+ Q = P;
+ <data dependency barrier>
+ D = M[Q];
+
+
+The data dependency barrier is very important to the RCU system, for example.
+See rcu_dereference() in include/linux/rcupdate.h. This permits the current
+target of an RCU'd pointer to be replaced with a new modified target, without
+the replacement target appearing to be incompletely initialised.
+
+Note that this extremely counterintuitive situation arises most easily on
+machines with split caches, so that, for example, one cache bank processes
+even-numbered cache lines and the other bank processes odd-numbered cache
+lines. The pointer P might be stored in an odd-numbered cache line, and the
+variable B might be stored in an even-numbered cache line. Then, if the
+even-numbered bank of the reading CPU's cache is extremely busy while the
+odd-numbered bank is idle, one can see the new value of the pointer (&b), but
+the old value of the variable (1).
+
+See also the subsection on "Cache Coherency" for a more thorough example.
+
+
+CONTROL DEPENDENCIES
+--------------------
+
+A control dependency requires a full read memory barrier, not simply a data
+dependency barrier to make it work correctly. Consider the following bit of
+code:
+
+ q = &a;
+ if (p)
+ q = &b;
+ <data dependency barrier>
+ x = *q;
+
+This will not have the desired effect because there is no actual data
+dependency, but rather a control dependency that the CPU may short-circuit by
+attempting to predict the outcome in advance. In such a case what's actually
+required is:
+
+ q = &a;
+ if (p)
+ q = &b;
+ <read barrier>
+ x = *q;
+
+
+SMP BARRIER PAIRING
+-------------------
+
+When dealing with CPU-CPU interactions, certain types of memory barrier should
+always be paired. A lack of appropriate pairing is almost certainly an error.
+
+A write barrier should always be paired with a data dependency barrier or read
+barrier, though a general barrier would also be viable. Similarly a read
+barrier or a data dependency barrier should always be paired with at least an
+write barrier, though, again, a general barrier is viable:
+
+ CPU 1 CPU 2
+ =============== ===============
+ a = 1;
+ <write barrier>
+ b = 2; x = a;
+ <read barrier>
+ y = b;
+
+Or:
+
+ CPU 1 CPU 2
+ =============== ===============================
+ a = 1;
+ <write barrier>
+ b = &a; x = b;
+ <data dependency barrier>
+ y = *x;
+
+Basically, the read barrier always has to be there, even though it can be of
+the "weaker" type.
+
+
+========================
+EXPLICIT KERNEL BARRIERS
+========================
+
+The Linux kernel has a variety of different barriers that act at different
+levels:
+
+ (*) Compiler barrier.
+
+ (*) CPU memory barriers.
+
+ (*) MMIO write barrier.
+
+
+COMPILER BARRIER
+----------------
+
+The Linux kernel has an explicit compiler barrier function that prevents the
+compiler from moving the memory accesses either side of it to the other side:
+
+ barrier();
+
+This a general barrier - lesser varieties of compiler barrier do not exist.
+
+The compiler barrier has no direct effect on the CPU, which may then reorder
+things however it wishes.
+
+
+CPU MEMORY BARRIERS
+-------------------
+
+The Linux kernel has eight basic CPU memory barriers:
+
+ TYPE MANDATORY SMP CONDITIONAL
+ =============== ======================= ===========================
+ GENERAL mb() smp_mb()
+ WRITE wmb() smp_wmb()
+ READ rmb() smp_rmb()
+ DATA DEPENDENCY read_barrier_depends() smp_read_barrier_depends()
+
+
+All CPU memory barriers unconditionally imply compiler barriers.
+
+SMP memory barriers are reduced to compiler barriers on uniprocessor compiled
+systems because it is assumed that a CPU will be appear to be self-consistent,
+and will order overlapping accesses correctly with respect to itself.
+
+[!] Note that SMP memory barriers _must_ be used if they look like they might
+be needed on an SMP system.
+
+Mandatory barriers should not be used to control SMP effects; but may be used
+to control MMIO effects on accesses through relaxed memory I/O windows.
+
+
+There are some more advanced barrier functions:
+
+ (*) set_mb(var, value)
+ (*) set_wmb(var, value)
+
+ These assign the value to the variable and then insert at least a write
+ barrier after it, depending on the function. They aren't guaranteed to
+ insert anything more than a compiler barrier in a UP compilation.
+
+
+ (*) smp_mb__before_atomic_dec();
+ (*) smp_mb__after_atomic_dec();
+ (*) smp_mb__before_atomic_inc();
+ (*) smp_mb__after_atomic_inc();
+
+ These are for use with atomic add, subtract, increment and decrement
+ functions, especially when used for reference counting. These functions
+ do not imply memory barriers.
+
+ As an example, consider a piece of code that marks an object as being dead
+ and then decrements the object's reference count:
+
+ obj->dead = 1;
+ smp_mb__before_atomic_dec();
+ atomic_dec(&obj->ref_count);
+
+ This makes sure that the death mark on the object is perceived to be set
+ *before* the reference counter is decremented.
+
+ See Documentation/atomic_ops.txt for more information.
+
+
+ (*) smp_mb__before_clear_bit(void);
+ (*) smp_mb__after_clear_bit(void);
+
+ These are for use similar to the atomic inc/dec barriers. These are
+ typically used for bitwise unlocking operations, so care must be taken as
+ there are no implicit memory barriers here either.
+
+ Consider implementing an unlock operation of some nature by clearing a
+ locking bit. The clear_bit() would then need to be barriered like this:
+
+ smp_mb__before_clear_bit();
+ clear_bit( ... );
+
+ This prevents memory operations before the clear leaking to after it. See
+ the subsection on "Locking Functions" with reference to UNLOCK operation
+ implications.
+
+ See Documentation/atomic_ops.txt for more information.
+
+
+MMIO WRITE BARRIER
+------------------
+
+The Linux kernel also has a special barrier for use with memory-mapped I/O
+writes:
+
+ mmiowb();
+
+This is a variation on the mandatory write barrier that causes writes to weakly
+ordered I/O regions to be partially ordered. Its effects may go beyond the
+CPU->Hardware interface and actually affect the hardware at some level.
+
+See the subsection "Locks vs I/O accesses" for more information.
+
+
+===============================
+IMPLICIT KERNEL MEMORY BARRIERS
+===============================
+
+Some of the other functions in the linux kernel imply memory barriers, amongst
+which are locking, scheduling and memory allocation functions.
+
+This specification is a _minimum_ guarantee; any particular architecture may
+provide more substantial guarantees, but these may not be relied upon outside
+of arch specific code.
+
+
+LOCKING FUNCTIONS
+-----------------
+
+The Linux kernel has a number of locking constructs:
+
+ (*) spin locks
+ (*) R/W spin locks
+ (*) mutexes
+ (*) semaphores
+ (*) R/W semaphores
+
+In all cases there are variants on "LOCK" operations and "UNLOCK" operations
+for each construct. These operations all imply certain barriers:
+
+ (1) LOCK operation implication:
+
+ Memory operations issued after the LOCK will be completed after the LOCK
+ operation has completed.
+
+ Memory operations issued before the LOCK may be completed after the LOCK
+ operation has completed.
+
+ (2) UNLOCK operation implication:
+
+ Memory operations issued before the UNLOCK will be completed before the
+ UNLOCK operation has completed.
+
+ Memory operations issued after the UNLOCK may be completed before the
+ UNLOCK operation has completed.
+
+ (3) LOCK vs LOCK implication:
+
+ All LOCK operations issued before another LOCK operation will be completed
+ before that LOCK operation.
+
+ (4) LOCK vs UNLOCK implication:
+
+ All LOCK operations issued before an UNLOCK operation will be completed
+ before the UNLOCK operation.
+
+ All UNLOCK operations issued before a LOCK operation will be completed
+ before the LOCK operation.
+
+ (5) Failed conditional LOCK implication:
+
+ Certain variants of the LOCK operation may fail, either due to being
+ unable to get the lock immediately, or due to receiving an unblocked
+ signal whilst asleep waiting for the lock to become available. Failed
+ locks do not imply any sort of barrier.
+
+Therefore, from (1), (2) and (4) an UNLOCK followed by an unconditional LOCK is
+equivalent to a full barrier, but a LOCK followed by an UNLOCK is not.
+
+[!] Note: one of the consequence of LOCKs and UNLOCKs being only one-way
+ barriers is that the effects instructions outside of a critical section may
+ seep into the inside of the critical section.
+
+Locks and semaphores may not provide any guarantee of ordering on UP compiled
+systems, and so cannot be counted on in such a situation to actually achieve
+anything at all - especially with respect to I/O accesses - unless combined
+with interrupt disabling operations.
+
+See also the section on "Inter-CPU locking barrier effects".
+
+
+As an example, consider the following:
+
+ *A = a;
+ *B = b;
+ LOCK
+ *C = c;
+ *D = d;
+ UNLOCK
+ *E = e;
+ *F = f;
+
+The following sequence of events is acceptable:
+
+ LOCK, {*F,*A}, *E, {*C,*D}, *B, UNLOCK
+
+ [+] Note that {*F,*A} indicates a combined access.
+
+But none of the following are:
+
+ {*F,*A}, *B, LOCK, *C, *D, UNLOCK, *E
+ *A, *B, *C, LOCK, *D, UNLOCK, *E, *F
+ *A, *B, LOCK, *C, UNLOCK, *D, *E, *F
+ *B, LOCK, *C, *D, UNLOCK, {*F,*A}, *E
+
+
+INTERRUPT DISABLING FUNCTIONS
+-----------------------------
+
+Functions that disable interrupts (LOCK equivalent) and enable interrupts
+(UNLOCK equivalent) will act as compiler barriers only. So if memory or I/O
+barriers are required in such a situation, they must be provided from some
+other means.
+
+
+MISCELLANEOUS FUNCTIONS
+-----------------------
+
+Other functions that imply barriers:
+
+ (*) schedule() and similar imply full memory barriers.
+
+ (*) Memory allocation and release functions imply full memory barriers.
+
+
+=================================
+INTER-CPU LOCKING BARRIER EFFECTS
+=================================
+
+On SMP systems locking primitives give a more substantial form of barrier: one
+that does affect memory access ordering on other CPUs, within the context of
+conflict on any particular lock.
+
+
+LOCKS VS MEMORY ACCESSES
+------------------------
+
+Consider the following: the system has a pair of spinlocks (N) and (Q), and
+three CPUs; then should the following sequence of events occur:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ *A = a; *E = e;
+ LOCK M LOCK Q
+ *B = b; *F = f;
+ *C = c; *G = g;
+ UNLOCK M UNLOCK Q
+ *D = d; *H = h;
+
+Then there is no guarantee as to what order CPU #3 will see the accesses to *A
+through *H occur in, other than the constraints imposed by the separate locks
+on the separate CPUs. It might, for example, see:
+
+ *E, LOCK M, LOCK Q, *G, *C, *F, *A, *B, UNLOCK Q, *D, *H, UNLOCK M
+
+But it won't see any of:
+
+ *B, *C or *D preceding LOCK M
+ *A, *B or *C following UNLOCK M
+ *F, *G or *H preceding LOCK Q
+ *E, *F or *G following UNLOCK Q
+
+
+However, if the following occurs:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ *A = a;
+ LOCK M [1]
+ *B = b;
+ *C = c;
+ UNLOCK M [1]
+ *D = d; *E = e;
+ LOCK M [2]
+ *F = f;
+ *G = g;
+ UNLOCK M [2]
+ *H = h;
+
+CPU #3 might see:
+
+ *E, LOCK M [1], *C, *B, *A, UNLOCK M [1],
+ LOCK M [2], *H, *F, *G, UNLOCK M [2], *D
+
+But assuming CPU #1 gets the lock first, it won't see any of:
+
+ *B, *C, *D, *F, *G or *H preceding LOCK M [1]
+ *A, *B or *C following UNLOCK M [1]
+ *F, *G or *H preceding LOCK M [2]
+ *A, *B, *C, *E, *F or *G following UNLOCK M [2]
+
+
+LOCKS VS I/O ACCESSES
+---------------------
+
+Under certain circumstances (especially involving NUMA), I/O accesses within
+two spinlocked sections on two different CPUs may be seen as interleaved by the
+PCI bridge, because the PCI bridge does not necessarily participate in the
+cache-coherence protocol, and is therefore incapable of issuing the required
+read memory barriers.
+
+For example:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ spin_lock(Q)
+ writel(0, ADDR)
+ writel(1, DATA);
+ spin_unlock(Q);
+ spin_lock(Q);
+ writel(4, ADDR);
+ writel(5, DATA);
+ spin_unlock(Q);
+
+may be seen by the PCI bridge as follows:
+
+ STORE *ADDR = 0, STORE *ADDR = 4, STORE *DATA = 1, STORE *DATA = 5
+
+which would probably cause the hardware to malfunction.
+
+
+What is necessary here is to intervene with an mmiowb() before dropping the
+spinlock, for example:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ spin_lock(Q)
+ writel(0, ADDR)
+ writel(1, DATA);
+ mmiowb();
+ spin_unlock(Q);
+ spin_lock(Q);
+ writel(4, ADDR);
+ writel(5, DATA);
+ mmiowb();
+ spin_unlock(Q);
+
+this will ensure that the two stores issued on CPU #1 appear at the PCI bridge
+before either of the stores issued on CPU #2.
+
+
+Furthermore, following a store by a load to the same device obviates the need
+for an mmiowb(), because the load forces the store to complete before the load
+is performed:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ spin_lock(Q)
+ writel(0, ADDR)
+ a = readl(DATA);
+ spin_unlock(Q);
+ spin_lock(Q);
+ writel(4, ADDR);
+ b = readl(DATA);
+ spin_unlock(Q);
+
+
+See Documentation/DocBook/deviceiobook.tmpl for more information.
+
+
+=================================
+WHERE ARE MEMORY BARRIERS NEEDED?
+=================================
+
+Under normal operation, memory operation reordering is generally not going to
+be a problem as a single-threaded linear piece of code will still appear to
+work correctly, even if it's in an SMP kernel. There are, however, three
+circumstances in which reordering definitely _could_ be a problem:
+
+ (*) Interprocessor interaction.
+
+ (*) Atomic operations.
+
+ (*) Accessing devices (I/O).
+
+ (*) Interrupts.
+
+
+INTERPROCESSOR INTERACTION
+--------------------------
+
+When there's a system with more than one processor, more than one CPU in the
+system may be working on the same data set at the same time. This can cause
+synchronisation problems, and the usual way of dealing with them is to use
+locks. Locks, however, are quite expensive, and so it may be preferable to
+operate without the use of a lock if at all possible. In such a case
+operations that affect both CPUs may have to be carefully ordered to prevent
+a malfunction.
+
+Consider, for example, the R/W semaphore slow path. Here a waiting process is
+queued on the semaphore, by virtue of it having a piece of its stack linked to
+the semaphore's list of waiting processes:
+
+ struct rw_semaphore {
+ ...
+ spinlock_t lock;
+ struct list_head waiters;
+ };
+
+ struct rwsem_waiter {
+ struct list_head list;
+ struct task_struct *task;
+ };
+
+To wake up a particular waiter, the up_read() or up_write() functions have to:
+
+ (1) read the next pointer from this waiter's record to know as to where the
+ next waiter record is;
+
+ (4) read the pointer to the waiter's task structure;
+
+ (3) clear the task pointer to tell the waiter it has been given the semaphore;
+
+ (4) call wake_up_process() on the task; and
+
+ (5) release the reference held on the waiter's task struct.
+
+In otherwords, it has to perform this sequence of events:
+
+ LOAD waiter->list.next;
+ LOAD waiter->task;
+ STORE waiter->task;
+ CALL wakeup
+ RELEASE task
+
+and if any of these steps occur out of order, then the whole thing may
+malfunction.
+
+Once it has queued itself and dropped the semaphore lock, the waiter does not
+get the lock again; it instead just waits for its task pointer to be cleared
+before proceeding. Since the record is on the waiter's stack, this means that
+if the task pointer is cleared _before_ the next pointer in the list is read,
+another CPU might start processing the waiter and might clobber the waiter's
+stack before the up*() function has a chance to read the next pointer.
+
+Consider then what might happen to the above sequence of events:
+
+ CPU 1 CPU 2
+ =============================== ===============================
+ down_xxx()
+ Queue waiter
+ Sleep
+ up_yyy()
+ LOAD waiter->task;
+ STORE waiter->task;
+ Woken up by other event
+ <preempt>
+ Resume processing
+ down_xxx() returns
+ call foo()
+ foo() clobbers *waiter
+ </preempt>
+ LOAD waiter->list.next;
+ --- OOPS ---
+
+This could be dealt with using the semaphore lock, but then the down_xxx()
+function has to needlessly get the spinlock again after being woken up.
+
+The way to deal with this is to insert a general SMP memory barrier:
+
+ LOAD waiter->list.next;
+ LOAD waiter->task;
+ smp_mb();
+ STORE waiter->task;
+ CALL wakeup
+ RELEASE task
+
+In this case, the barrier makes a guarantee that all memory accesses before the
+barrier will appear to happen before all the memory accesses after the barrier
+with respect to the other CPUs on the system. It does _not_ guarantee that all
+the memory accesses before the barrier will be complete by the time the barrier
+instruction itself is complete.
+
+On a UP system - where this wouldn't be a problem - the smp_mb() is just a
+compiler barrier, thus making sure the compiler emits the instructions in the
+right order without actually intervening in the CPU. Since there there's only
+one CPU, that CPU's dependency ordering logic will take care of everything
+else.
+
+
+ATOMIC OPERATIONS
+-----------------
+
+Though they are technically interprocessor interaction considerations, atomic
+operations are noted specially as they do _not_ generally imply memory
+barriers. The possible offenders include:
+
+ xchg();
+ cmpxchg();
+ test_and_set_bit();
+ test_and_clear_bit();
+ test_and_change_bit();
+ atomic_cmpxchg();
+ atomic_inc_return();
+ atomic_dec_return();
+ atomic_add_return();
+ atomic_sub_return();
+ atomic_inc_and_test();
+ atomic_dec_and_test();
+ atomic_sub_and_test();
+ atomic_add_negative();
+ atomic_add_unless();
+
+These may be used for such things as implementing LOCK operations or controlling
+the lifetime of objects by decreasing their reference counts.
+
+The following may also be possible offenders as they may be used as UNLOCK
+operations.
+
+ set_bit();
+ clear_bit();
+ change_bit();
+ atomic_set();
+
+But the following should be safe as they can't be used for conditional
+processing since they don't return a result.
+
+ atomic_add();
+ atomic_sub();
+ atomic_inc();
+ atomic_dec();
+
+See Documentation/atomic_ops.txt for more information.
+
+
+ACCESSING DEVICES
+-----------------
+
+Many devices can be memory mapped, and so appear to the CPU as if they're just
+as set of memory locations. However, to control the device, the driver
+usually has to make the right accesses in exactly the right order.
+
+Consider, for example, an ethernet chipset such as the AMD PCnet32. It
+presents to the CPU an "address register" and a bunch of "data registers". The
+way it's accessed is to write the index of the internal register to be accessed
+to the address register, and then read or write the appropriate data register
+to access the chip's internal register. This could theoretically be done by:
+
+ *ADDR = 3;
+ reg = *DATA;
+
+Or:
+
+ *ADDR = 3;
+ *DATA = value;
+
+The problem with a clever CPU or a clever compiler is that the store to the
+address register is not guaranteed to happen before the operation on the data
+register, if the CPU or the compiler thinks it is more efficient to defer the
+address store:
+
+ LOAD *DATA, STORE *ADDR
+
+or:
+
+ STORE *DATA, STORE *ADDR
+
+which will cause the device or the driver to malfunction.
+
+
+In the Linux kernel, however, I/O should be done through the appropriate
+accessor routines - such as inb() or writel() - which know how to make such
+accesses appropriately sequential.
+
+On some systems, I/O stores are not strongly ordered across all CPUs, and so
+locking should be used and mmiowb() must be issued prior to unlocking the
+critical section.
+
+See Documentation/DocBook/deviceiobook.tmpl for more information.
+
+
+INTERRUPTS
+----------
+
+A driver may be interrupted by its own interrupt service routine, and thus the
+two parts of the driver may interfere with each other's attempts to control or
+access the device.
+
+This may be alleviated - at least in part - by disabling local interrupts (a
+form of locking), such that the critical operations are all contained within
+the interrupt-disabled section in the driver. Whilst the driver's interrupt
+routine is executing, the driver's core may not run on the same CPU, and its
+interrupt is not permitted to happen again until the current interrupt has been
+handled, thus the interrupt handler does not need to lock against that.
+
+However, consider a driver that was talking to an ethernet card that sports an
+address register and a data register. If that driver's core talks to the card
+under interrupt-disablement and then the driver's interrupt handler is invoked:
+
+ LOCAL IRQ DISABLE
+ writew(ADDR, 3);
+ writew(DATA, y);
+ LOCAL IRQ ENABLE
+ <interrupt>
+ writew(ADDR, 4);
+ q = readw(DATA);
+ </interrupt>
+
+The store to the data register might happen after the second store to the
+address register if ordering rules are sufficiently relaxed:
+
+ STORE *ADDR = 3, STORE *ADDR = 4, STORE *DATA = y, q = LOAD *DATA
+
+
+If ordering rules are relaxed, it must be assumed that accesses done inside an
+interrupt disabled section may leak outside of it and may interleave with
+accesses performed in an interrupt - and vice versa - unless implicit or
+explicit barriers are used.
+
+Normally this won't be a problem because the I/O accesses done inside such
+sections will include synchronous load operations on strictly ordered I/O
+registers that form implicit I/O barriers. If this isn't sufficient then an
+mmiowb() may need to be used explicitly.
+
+
+A similar situation may occur between an interrupt routine and two routines
+running on separate CPUs that communicate with each other. If such a case is
+likely, then interrupt-disabling locks should be used to guarantee ordering.
+
+
+==========================
+KERNEL I/O BARRIER EFFECTS
+==========================
+
+When accessing I/O memory, drivers should use the appropriate accessor
+functions:
+
+ (*) inX(), outX():
+
+ These are intended to talk to I/O space rather than memory space, but
+ that's primarily a CPU-specific concept. The i386 and x86_64 processors do
+ indeed have special I/O space access cycles and instructions, but many
+ CPUs don't have such a concept.
+
+ The PCI bus, amongst others, defines an I/O space concept - which on such
+ CPUs as i386 and x86_64 cpus readily maps to the CPU's concept of I/O
+ space. However, it may also mapped as a virtual I/O space in the CPU's
+ memory map, particularly on those CPUs that don't support alternate
+ I/O spaces.
+
+ Accesses to this space may be fully synchronous (as on i386), but
+ intermediary bridges (such as the PCI host bridge) may not fully honour
+ that.
+
+ They are guaranteed to be fully ordered with respect to each other.
+
+ They are not guaranteed to be fully ordered with respect to other types of
+ memory and I/O operation.
+
+ (*) readX(), writeX():
+
+ Whether these are guaranteed to be fully ordered and uncombined with
+ respect to each other on the issuing CPU depends on the characteristics
+ defined for the memory window through which they're accessing. On later
+ i386 architecture machines, for example, this is controlled by way of the
+ MTRR registers.
+
+ Ordinarily, these will be guaranteed to be fully ordered and uncombined,,
+ provided they're not accessing a prefetchable device.
+
+ However, intermediary hardware (such as a PCI bridge) may indulge in
+ deferral if it so wishes; to flush a store, a load from the same location
+ is preferred[*], but a load from the same device or from configuration
+ space should suffice for PCI.
+
+ [*] NOTE! attempting to load from the same location as was written to may
+ cause a malfunction - consider the 16550 Rx/Tx serial registers for
+ example.
+
+ Used with prefetchable I/O memory, an mmiowb() barrier may be required to
+ force stores to be ordered.
+
+ Please refer to the PCI specification for more information on interactions
+ between PCI transactions.
+
+ (*) readX_relaxed()
+
+ These are similar to readX(), but are not guaranteed to be ordered in any
+ way. Be aware that there is no I/O read barrier available.
+
+ (*) ioreadX(), iowriteX()
+
+ These will perform as appropriate for the type of access they're actually
+ doing, be it inX()/outX() or readX()/writeX().
+
+
+========================================
+ASSUMED MINIMUM EXECUTION ORDERING MODEL
+========================================
+
+It has to be assumed that the conceptual CPU is weakly-ordered but that it will
+maintain the appearance of program causality with respect to itself. Some CPUs
+(such as i386 or x86_64) are more constrained than others (such as powerpc or
+frv), and so the most relaxed case (namely DEC Alpha) must be assumed outside
+of arch-specific code.
+
+This means that it must be considered that the CPU will execute its instruction
+stream in any order it feels like - or even in parallel - provided that if an
+instruction in the stream depends on the an earlier instruction, then that
+earlier instruction must be sufficiently complete[*] before the later
+instruction may proceed; in other words: provided that the appearance of
+causality is maintained.
+
+ [*] Some instructions have more than one effect - such as changing the
+ condition codes, changing registers or changing memory - and different
+ instructions may depend on different effects.
+
+A CPU may also discard any instruction sequence that winds up having no
+ultimate effect. For example, if two adjacent instructions both load an
+immediate value into the same register, the first may be discarded.
+
+
+Similarly, it has to be assumed that compiler might reorder the instruction
+stream in any way it sees fit, again provided the appearance of causality is
+maintained.
+
+
+============================
+THE EFFECTS OF THE CPU CACHE
+============================
+
+The way cached memory operations are perceived across the system is affected to
+a certain extent by the caches that lie between CPUs and memory, and by the
+memory coherence system that maintains the consistency of state in the system.
+
+As far as the way a CPU interacts with another part of the system through the
+caches goes, the memory system has to include the CPU's caches, and memory
+barriers for the most part act at the interface between the CPU and its cache
+(memory barriers logically act on the dotted line in the following diagram):
+
+ <--- CPU ---> : <----------- Memory ----------->
+ :
+ +--------+ +--------+ : +--------+ +-----------+
+ | | | | : | | | | +--------+
+ | CPU | | Memory | : | CPU | | | | |
+ | Core |--->| Access |----->| Cache |<-->| | | |
+ | | | Queue | : | | | |--->| Memory |
+ | | | | : | | | | | |
+ +--------+ +--------+ : +--------+ | | | |
+ : | Cache | +--------+
+ : | Coherency |
+ : | Mechanism | +--------+
+ +--------+ +--------+ : +--------+ | | | |
+ | | | | : | | | | | |
+ | CPU | | Memory | : | CPU | | |--->| Device |
+ | Core |--->| Access |----->| Cache |<-->| | | |
+ | | | Queue | : | | | | | |
+ | | | | : | | | | +--------+
+ +--------+ +--------+ : +--------+ +-----------+
+ :
+ :
+
+Although any particular load or store may not actually appear outside of the
+CPU that issued it since it may have been satisfied within the CPU's own cache,
+it will still appear as if the full memory access had taken place as far as the
+other CPUs are concerned since the cache coherency mechanisms will migrate the
+cacheline over to the accessing CPU and propagate the effects upon conflict.
+
+The CPU core may execute instructions in any order it deems fit, provided the
+expected program causality appears to be maintained. Some of the instructions
+generate load and store operations which then go into the queue of memory
+accesses to be performed. The core may place these in the queue in any order
+it wishes, and continue execution until it is forced to wait for an instruction
+to complete.
+
+What memory barriers are concerned with is controlling the order in which
+accesses cross from the CPU side of things to the memory side of things, and
+the order in which the effects are perceived to happen by the other observers
+in the system.
+
+[!] Memory barriers are _not_ needed within a given CPU, as CPUs always see
+their own loads and stores as if they had happened in program order.
+
+
+CACHE COHERENCY
+---------------
+
+Life isn't quite as simple as it may appear above, however: for while the
+caches are expected to be coherent, there's no guarantee that that coherency
+will be ordered. This means that whilst changes made on one CPU will
+eventually become visible on all CPUs, there's no guarantee that they will
+become apparent in the same order on those other CPUs.
+
+
+Consider dealing with a system that has pair of CPUs (1 & 2), each of which has
+a pair of parallel data caches (CPU 1 has A/B, and CPU 2 has C/D):
+
+ :
+ : +--------+
+ : +---------+ | |
+ +--------+ : +--->| Cache A |<------->| |
+ | | : | +---------+ | |
+ | CPU 1 |<---+ | |
+ | | : | +---------+ | |
+ +--------+ : +--->| Cache B |<------->| |
+ : +---------+ | |
+ : | Memory |
+ : +---------+ | System |
+ +--------+ : +--->| Cache C |<------->| |
+ | | : | +---------+ | |
+ | CPU 2 |<---+ | |
+ | | : | +---------+ | |
+ +--------+ : +--->| Cache D |<------->| |
+ : +---------+ | |
+ : +--------+
+ :
+
+Imagine the system has the following properties:
+
+ (*) an odd-numbered cache line may be in cache A, cache C or it may still be
+ resident in memory;
+
+ (*) an even-numbered cache line may be in cache B, cache D or it may still be
+ resident in memory;
+
+ (*) whilst the CPU core is interrogating one cache, the other cache may be
+ making use of the bus to access the rest of the system - perhaps to
+ displace a dirty cacheline or to do a speculative load;
+
+ (*) each cache has a queue of operations that need to be applied to that cache
+ to maintain coherency with the rest of the system;
+
+ (*) the coherency queue is not flushed by normal loads to lines already
+ present in the cache, even though the contents of the queue may
+ potentially effect those loads.
+
+Imagine, then, that two writes are made on the first CPU, with a write barrier
+between them to guarantee that they will appear to reach that CPU's caches in
+the requisite order:
+
+ CPU 1 CPU 2 COMMENT
+ =============== =============== =======================================
+ u == 0, v == 1 and p == &u, q == &u
+ v = 2;
+ smp_wmb(); Make sure change to v visible before
+ change to p
+ <A:modify v=2> v is now in cache A exclusively
+ p = &v;
+ <B:modify p=&v> p is now in cache B exclusively
+
+The write memory barrier forces the other CPUs in the system to perceive that
+the local CPU's caches have apparently been updated in the correct order. But
+now imagine that the second CPU that wants to read those values:
+
+ CPU 1 CPU 2 COMMENT
+ =============== =============== =======================================
+ ...
+ q = p;
+ x = *q;
+
+The above pair of reads may then fail to happen in expected order, as the
+cacheline holding p may get updated in one of the second CPU's caches whilst
+the update to the cacheline holding v is delayed in the other of the second
+CPU's caches by some other cache event:
+
+ CPU 1 CPU 2 COMMENT
+ =============== =============== =======================================
+ u == 0, v == 1 and p == &u, q == &u
+ v = 2;
+ smp_wmb();
+ <A:modify v=2> <C:busy>
+ <C:queue v=2>
+ p = &b; q = p;
+ <D:request p>
+ <B:modify p=&v> <D:commit p=&v>
+ <D:read p>
+ x = *q;
+ <C:read *q> Reads from v before v updated in cache
+ <C:unbusy>
+ <C:commit v=2>
+
+Basically, whilst both cachelines will be updated on CPU 2 eventually, there's
+no guarantee that, without intervention, the order of update will be the same
+as that committed on CPU 1.
+
+
+To intervene, we need to interpolate a data dependency barrier or a read
+barrier between the loads. This will force the cache to commit its coherency
+queue before processing any further requests:
+
+ CPU 1 CPU 2 COMMENT
+ =============== =============== =======================================
+ u == 0, v == 1 and p == &u, q == &u
+ v = 2;
+ smp_wmb();
+ <A:modify v=2> <C:busy>
+ <C:queue v=2>
+ p = &b; q = p;
+ <D:request p>
+ <B:modify p=&v> <D:commit p=&v>
+ <D:read p>
+ smp_read_barrier_depends()
+ <C:unbusy>
+ <C:commit v=2>
+ x = *q;
+ <C:read *q> Reads from v after v updated in cache
+
+
+This sort of problem can be encountered on DEC Alpha processors as they have a
+split cache that improves performance by making better use of the data bus.
+Whilst most CPUs do imply a data dependency barrier on the read when a memory
+access depends on a read, not all do, so it may not be relied on.
+
+
+CACHE COHERENCY VS DMA
+----------------------
+
+Not all systems maintain cache coherency with respect to devices doing DMA. In
+such cases, a device attempting DMA may obtain stale data from RAM because
+dirty cache lines may be resident in the caches of various CPUs, and may not
+have been written back to RAM yet. To deal with this, the appropriate part of
+the kernel must flush the overlapping bits of cache on each CPU (and maybe
+invalidate them as well).
+
+In addition, the data DMA'd to RAM by a device may be overwritten by dirty
+cache lines being written back to RAM from a CPU's cache after the device has
+installed its own data, or cache lines simply present in a CPUs cache may
+simply obscure the fact that RAM has been updated, until at such time as the
+cacheline is discarded from the CPU's cache and reloaded. To deal with this,
+the appropriate part of the kernel must invalidate the overlapping bits of the
+cache on each CPU.
+
+See Documentation/cachetlb.txt for more information on cache management.
+
+
+CACHE COHERENCY VS MMIO
+-----------------------
+
+Memory mapped I/O usually takes place through memory locations that are part of
+a window in the CPU's memory space that have different properties assigned than
+the usual RAM directed window.
+
+Amongst these properties is usually the fact that such accesses bypass the
+caching entirely and go directly to the device buses. This means MMIO accesses
+may, in effect, overtake accesses to cached memory that were emitted earlier.
+A memory barrier isn't sufficient in such a case, but rather the cache must be
+flushed between the cached memory write and the MMIO access if the two are in
+any way dependent.
+
+
+=========================
+THE THINGS CPUS GET UP TO
+=========================
+
+A programmer might take it for granted that the CPU will perform memory
+operations in exactly the order specified, so that if a CPU is, for example,
+given the following piece of code to execute:
+
+ a = *A;
+ *B = b;
+ c = *C;
+ d = *D;
+ *E = e;
+
+They would then expect that the CPU will complete the memory operation for each
+instruction before moving on to the next one, leading to a definite sequence of
+operations as seen by external observers in the system:
+
+ LOAD *A, STORE *B, LOAD *C, LOAD *D, STORE *E.
+
+
+Reality is, of course, much messier. With many CPUs and compilers, the above
+assumption doesn't hold because:
+
+ (*) loads are more likely to need to be completed immediately to permit
+ execution progress, whereas stores can often be deferred without a
+ problem;
+
+ (*) loads may be done speculatively, and the result discarded should it prove
+ to have been unnecessary;
+
+ (*) loads may be done speculatively, leading to the result having being
+ fetched at the wrong time in the expected sequence of events;
+
+ (*) the order of the memory accesses may be rearranged to promote better use
+ of the CPU buses and caches;
+
+ (*) loads and stores may be combined to improve performance when talking to
+ memory or I/O hardware that can do batched accesses of adjacent locations,
+ thus cutting down on transaction setup costs (memory and PCI devices may
+ both be able to do this); and
+
+ (*) the CPU's data cache may affect the ordering, and whilst cache-coherency
+ mechanisms may alleviate this - once the store has actually hit the cache
+ - there's no guarantee that the coherency management will be propagated in
+ order to other CPUs.
+
+So what another CPU, say, might actually observe from the above piece of code
+is:
+
+ LOAD *A, ..., LOAD {*C,*D}, STORE *E, STORE *B
+
+ (Where "LOAD {*C,*D}" is a combined load)
+
+
+However, it is guaranteed that a CPU will be self-consistent: it will see its
+_own_ accesses appear to be correctly ordered, without the need for a memory
+barrier. For instance with the following code:
+
+ X = *A;
+ *A = Y;
+ Z = *A;
+
+and assuming no intervention by an external influence, it can be taken that:
+
+ (*) X will hold the old value of *A, and will never happen after the store and
+ thus end up being given the value that was assigned to *A from Y instead;
+ and
+
+ (*) Z will always be given the value in *A that was assigned there from Y, and
+ will never happen before the store, and thus end up with the same value
+ that was in *A initially.
+
+(This is ignoring the fact that the value initially in *A may appear to be the
+same as the value assigned to *A from Y).
+
+
+AND THEN THERE'S THE ALPHA
+--------------------------
+
+The DEC Alpha CPU is one of the most relaxed CPUs there is. Not only that,
+some versions of the Alpha CPU have a split data cache, permitting them to have
+two semantically related cache lines updating at separate times. This is where
+the data dependency barrier really becomes necessary as this synchronises both
+caches with the memory coherence system, thus making it seem like pointer
+changes vs new data occur in the right order.
+
+The Alpha defines the Linux's kernel's memory barrier model.
+
+See the subsection on "Cache Coherency" above.
+
+
+==========
+REFERENCES
+==========
+
+Alpha AXP Architecture Reference Manual, Second Edition (Sites & Witek,
+Digital Press)
+ Chapter 5.2: Physical Address Space Characteristics
+ Chapter 5.4: Caches and Write Buffers
+ Chapter 5.5: Data Sharing
+ Chapter 5.6: Read/Write Ordering
+
+AMD64 Architecture Programmer's Manual Volume 2: System Programming
+ Chapter 7.1: Memory-Access Ordering
+ Chapter 7.4: Buffering and Combining Memory Writes
+
+IA-32 Intel Architecture Software Developer's Manual, Volume 3:
+System Programming Guide
+ Chapter 7.1: Locked Atomic Operations
+ Chapter 7.2: Memory Ordering
+ Chapter 7.4: Serializing Instructions
+
+The SPARC Architecture Manual, Version 9
+ Chapter 8: Memory Models
+ Appendix D: Formal Specification of the Memory Models
+ Appendix J: Programming with the Memory Models
+
+UltraSPARC Programmer Reference Manual
+ Chapter 5: Memory Accesses and Cacheability
+ Chapter 15: Sparc-V9 Memory Models
+
+UltraSPARC III Cu User's Manual
+ Chapter 9: Memory Models
+
+UltraSPARC IIIi Processor User's Manual
+ Chapter 8: Memory Models
+
+UltraSPARC Architecture 2005
+ Chapter 9: Memory
+ Appendix D: Formal Specifications of the Memory Models
+
+UltraSPARC T1 Supplement to the UltraSPARC Architecture 2005
+ Chapter 8: Memory Models
+ Appendix F: Caches and Cache Coherency
+
+Solaris Internals, Core Kernel Architecture, p63-68:
+ Chapter 3.3: Hardware Considerations for Locks and
+ Synchronization
+
+Unix Systems for Modern Architectures, Symmetric Multiprocessing and Caching
+for Kernel Programmers:
+ Chapter 13: Other Memory Models
+
+Intel Itanium Architecture Software Developer's Manual: Volume 1:
+ Section 2.6: Speculation
+ Section 4.4: Memory Access
-
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to [email protected]
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/
[Index of Archives]
[Kernel Newbies]
[Netfilter]
[Bugtraq]
[Photo]
[Stuff]
[Gimp]
[Yosemite News]
[MIPS Linux]
[ARM Linux]
[Linux Security]
[Linux RAID]
[Video 4 Linux]
[Linux for the blind]
[Linux Resources]