Pretty self-explanatory. Whitespace cleanps, comment fixes,
spelling/typos, etc.
mcd@arrakis:~/linux/source/linux-2.6.14+slab_cleanup/patches $ diffstat
CodingStyle-slab_c.patch
slab.c | 653
+++++++++++++++++++++++++++++++++--------------------------------
1 files changed, 338 insertions(+), 315 deletions(-)
-Matt
Before doing any functional/structural cleanups, fix a bunch of comments,
whitespace and general CodingStyle issues.
Index: linux-2.6.14+slab_cleanup/mm/slab.c
===================================================================
--- linux-2.6.14+slab_cleanup.orig/mm/slab.c 2005-11-07 15:58:06.022235912 -0800
+++ linux-2.6.14+slab_cleanup/mm/slab.c 2005-11-07 15:58:42.336715272 -0800
@@ -119,7 +119,6 @@
*
* FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
*/
-
#ifdef CONFIG_DEBUG_SLAB
#define DEBUG 1
#define STATS 1
@@ -180,7 +179,7 @@
SLAB_DESTROY_BY_RCU)
#endif
-/*
+/**
* kmem_bufctl_t:
*
* Bufctl's are used for linking objs within a slab
@@ -198,13 +197,13 @@
* Note: This limit can be raised by introducing a general cache whose size
* is less than 512 (PAGE_SIZE<<3), but greater than 256.
*/
-
typedef unsigned int kmem_bufctl_t;
#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
-#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
+#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
-/* Max number of objs-per-slab for caches which use off-slab slabs.
+/*
+ * Max number of objs-per-slab for caches which use off-slab slabs.
* Needed to avoid a possible looping condition in cache_grow().
*/
static unsigned long offslab_limit;
@@ -273,7 +272,8 @@ struct array_cache {
*/
};
-/* bootstrap: The caches do not work without cpuarrays anymore,
+/*
+ * bootstrap: The caches do not work without cpuarrays anymore,
* but the cpuarrays are allocated from the generic caches...
*/
#define BOOT_CPUCACHE_ENTRIES 1
@@ -301,11 +301,11 @@ struct kmem_list3 {
/*
* Need this for bootstrapping a per node allocator.
*/
-#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
+#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
-#define CACHE_CACHE 0
-#define SIZE_AC 1
-#define SIZE_L3 (1 + MAX_NUMNODES)
+#define CACHE_CACHE 0
+#define SIZE_AC 1
+#define SIZE_L3 (1 + MAX_NUMNODES)
/*
* This function must be completely optimized away if
@@ -318,10 +318,10 @@ static __always_inline int index_of(cons
if (__builtin_constant_p(size)) {
int i = 0;
-#define CACHE(x) \
- if (size <=x) \
- return i; \
- else \
+#define CACHE(x) \
+ if (size <= x) \
+ return i; \
+ else \
i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
@@ -349,16 +349,16 @@ static inline void kmem_list3_init(struc
parent->free_touched = 0;
}
-#define MAKE_LIST(cachep, listp, slab, nodeid) \
- do { \
- INIT_LIST_HEAD(listp); \
- list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
+#define MAKE_LIST(cachep, listp, slab, nodeid) \
+ do { \
+ INIT_LIST_HEAD(listp); \
+ list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
} while (0)
-#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
- do { \
+#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
+ do { \
MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
+ MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid);\
MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
} while (0)
@@ -367,7 +367,6 @@ static inline void kmem_list3_init(struc
*
* manages a cache.
*/
-
struct kmem_cache_s {
/* 1) per-cpu data, touched during every alloc/free */
struct array_cache *array[NR_CPUS];
@@ -428,10 +427,11 @@ struct kmem_cache_s {
};
#define CFLGS_OFF_SLAB (0x80000000UL)
-#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
+#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
#define BATCHREFILL_LIMIT 16
-/* Optimization question: fewer reaps means less
+/*
+ * Optimization question: fewer reaps means less
* probability for unnessary cpucache drain/refill cycles.
*
* OTHO the cpuarrays can contain lots of objects,
@@ -447,14 +447,13 @@ struct kmem_cache_s {
#define STATS_INC_GROWN(x) ((x)->grown++)
#define STATS_INC_REAPED(x) ((x)->reaped++)
#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
- (x)->high_mark = (x)->num_active; \
+ (x)->high_mark = (x)->num_active; \
} while (0)
#define STATS_INC_ERR(x) ((x)->errors++)
#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
-#define STATS_SET_FREEABLE(x, i) \
- do { if ((x)->max_freeable < i) \
- (x)->max_freeable = i; \
+#define STATS_SET_FREEABLE(x,i) do { if ((x)->max_freeable < i) \
+ (x)->max_freeable = i; \
} while (0)
#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
@@ -471,9 +470,7 @@ struct kmem_cache_s {
#define STATS_INC_ERR(x) do { } while (0)
#define STATS_INC_NODEALLOCS(x) do { } while (0)
#define STATS_INC_NODEFREES(x) do { } while (0)
-#define STATS_SET_FREEABLE(x, i) \
- do { } while (0)
-
+#define STATS_SET_FREEABLE(x,i) do { } while (0)
#define STATS_INC_ALLOCHIT(x) do { } while (0)
#define STATS_INC_ALLOCMISS(x) do { } while (0)
#define STATS_INC_FREEHIT(x) do { } while (0)
@@ -481,7 +478,8 @@ struct kmem_cache_s {
#endif
#if DEBUG
-/* Magic nums for obj red zoning.
+/*
+ * Magic nums for obj red zoning.
* Placed in the first word before and the first word after an obj.
*/
#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
@@ -492,7 +490,8 @@ struct kmem_cache_s {
#define POISON_FREE 0x6b /* for use-after-free poisoning */
#define POISON_END 0xa5 /* end-byte of poisoning */
-/* memory layout of objects:
+/*
+ * memory layout of objects:
* 0 : objp
* 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
* the end of an object is aligned with the end of the real
@@ -530,10 +529,10 @@ static unsigned long *dbg_redzone2(kmem_
static void **dbg_userword(kmem_cache_t *cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_STORE_USER));
- return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
+ return (void **)(objp+cachep->objsize-BYTES_PER_WORD);
}
-#else
+#else /* !DEBUG */
#define obj_dbghead(x) 0
#define obj_reallen(cachep) (cachep->objsize)
@@ -541,7 +540,7 @@ static void **dbg_userword(kmem_cache_t
#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
-#endif
+#endif /* DEBUG */
/*
* Maximum size of an obj (in 2^order pages)
@@ -565,7 +564,8 @@ static void **dbg_userword(kmem_cache_t
#define BREAK_GFP_ORDER_LO 0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
-/* Macros for storing/retrieving the cachep and or slab from the
+/*
+ * Macros for storing/retrieving the cachep and or slab from the
* global 'mem_map'. These are used to find the slab an obj belongs to.
* With kfree(), these are used to find the cache which an obj belongs to.
*/
@@ -574,7 +574,7 @@ static int slab_break_gfp_order = BREAK_
#define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x))
#define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev)
-/* These are the default caches for kmalloc. Custom caches can have other sizes. */
+/* These are the default kmalloc caches. Custom caches can have other sizes. */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
@@ -640,7 +640,7 @@ static enum {
static DEFINE_PER_CPU(struct work_struct, reap_work);
-static void free_block(kmem_cache_t* cachep, void** objpp, int len, int node);
+static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
static void enable_cpucache (kmem_cache_t *cachep);
static void cache_reap (void *unused);
static int __node_shrink(kmem_cache_t *cachep, int node);
@@ -655,19 +655,19 @@ static inline kmem_cache_t *__find_gener
struct cache_sizes *csizep = malloc_sizes;
#if DEBUG
- /* This happens if someone tries to call
- * kmem_cache_create(), or __kmalloc(), before
- * the generic caches are initialized.
- */
+ /*
+ * This happens if someone calls kmem_cache_create() or __kmalloc()
+ * before the generic caches are initialized
+ */
BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
#endif
while (size > csizep->cs_size)
csizep++;
/*
- * Really subtle: The last entry with cs->cs_size==ULONG_MAX
- * has cs_{dma,}cachep==NULL. Thus no special case
- * for large kmalloc calls required.
+ * Really subtle: The last entry with cs->cs_size == ULONG_MAX has
+ * cs_{dma,}cachep == NULL, thus no special case for large kmalloc
+ * calls is required.
*/
if (unlikely(gfpflags & GFP_DMA))
return csizep->cs_dmacachep;
@@ -680,9 +680,9 @@ kmem_cache_t *kmem_find_general_cachep(s
}
EXPORT_SYMBOL(kmem_find_general_cachep);
-/* Cal the num objs, wastage, and bytes left over for a given slab size. */
+/* Calculate the num objs, wastage, & bytes left over for a given slab size. */
static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
- int flags, size_t *left_over, unsigned int *num)
+ int flags, size_t *left_over, unsigned int *num)
{
int i;
size_t wastage = PAGE_SIZE<<gfporder;
@@ -718,7 +718,7 @@ static void __slab_error(const char *fun
}
/*
- * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
+ * Initiate the reap timer running on the target CPU. We run at around 1-2Hz
* via the workqueue/eventd.
* Add the CPU number into the expiration time to minimize the possibility of
* the CPUs getting into lockstep and contending for the global cache chain
@@ -740,9 +740,9 @@ static void __devinit start_cpu_timer(in
}
static struct array_cache *alloc_arraycache(int node, int entries,
- int batchcount)
+ int batchcount)
{
- int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
+ int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
struct array_cache *nc = NULL;
nc = kmalloc_node(memsize, GFP_KERNEL, node);
@@ -760,7 +760,7 @@ static struct array_cache *alloc_arrayca
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
struct array_cache **ac_ptr;
- int memsize = sizeof(void*)*MAX_NUMNODES;
+ int memsize = sizeof(void *) * MAX_NUMNODES;
int i;
if (limit > 1)
@@ -797,7 +797,8 @@ static inline void free_alien_cache(stru
kfree(ac_ptr);
}
-static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node)
+static inline void __drain_alien_cache(kmem_cache_t *cachep,
+ struct array_cache *ac, int node)
{
struct kmem_list3 *rl3 = cachep->nodelists[node];
@@ -825,16 +826,16 @@ static void drain_alien_cache(kmem_cache
}
}
#else
-#define alloc_alien_cache(node, limit) do { } while (0)
-#define free_alien_cache(ac_ptr) do { } while (0)
-#define drain_alien_cache(cachep, l3) do { } while (0)
+#define alloc_alien_cache(node, limit) do { } while (0)
+#define free_alien_cache(ac_ptr) do { } while (0)
+#define drain_alien_cache(cachep, l3) do { } while (0)
#endif
static int __devinit cpuup_callback(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
+ unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
- kmem_cache_t* cachep;
+ kmem_cache_t *cachep;
struct kmem_list3 *l3 = NULL;
int node = cpu_to_node(cpu);
int memsize = sizeof(struct kmem_list3);
@@ -843,14 +844,15 @@ static int __devinit cpuup_callback(stru
switch (action) {
case CPU_UP_PREPARE:
down(&cache_chain_sem);
- /* we need to do this right in the beginning since
+ /*
+ * we need to do this right in the beginning since
* alloc_arraycache's are going to use this list.
* kmalloc_node allows us to add the slab to the right
* kmem_list3 and not this cpu's kmem_list3
*/
-
list_for_each_entry(cachep, &cache_chain, next) {
- /* setup the size64 kmemlist for cpu before we can
+ /*
+ * setup the size64 kmemlist for cpu before we can
* begin anything. Make sure some other cpu on this
* node has not already allocated this
*/
@@ -872,8 +874,7 @@ static int __devinit cpuup_callback(stru
spin_unlock_irq(&cachep->nodelists[node]->list_lock);
}
- /* Now we can go ahead with allocating the shared array's
- & array cache's */
+ /* Now we can allocate the shared arrays & array caches */
list_for_each_entry(cachep, &cache_chain, next) {
nc = alloc_arraycache(node, cachep->limit,
cachep->batchcount);
@@ -889,8 +890,10 @@ static int __devinit cpuup_callback(stru
0xbaadf00d)))
goto bad;
- /* we are serialised from CPU_DEAD or
- CPU_UP_CANCELLED by the cpucontrol lock */
+ /*
+ * we are serialised from CPU_DEAD or
+ * CPU_UP_CANCELLED by the cpucontrol lock
+ */
l3->shared = nc;
}
}
@@ -970,8 +973,7 @@ static struct notifier_block cpucache_no
/*
* swap the static kmem_list3 with kmalloced memory
*/
-static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list,
- int nodeid)
+static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
{
struct kmem_list3 *ptr;
@@ -986,7 +988,8 @@ static void init_list(kmem_cache_t *cach
local_irq_enable();
}
-/* Initialisation.
+/*
+ * Initialization.
* Called after the gfp() functions have been enabled, and before smp_init().
*/
void __init kmem_cache_init(void)
@@ -1009,7 +1012,8 @@ void __init kmem_cache_init(void)
if (num_physpages > (32 << 20) >> PAGE_SHIFT)
slab_break_gfp_order = BREAK_GFP_ORDER_HI;
- /* Bootstrap is tricky, because several objects are allocated
+ /*
+ * Bootstrap is tricky, because several objects are allocated
* from caches that do not exist yet:
* 1) initialize the cache_cache cache: it contains the kmem_cache_t
* structures of all caches, except cache_cache itself: cache_cache
@@ -1040,7 +1044,7 @@ void __init kmem_cache_init(void)
cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
- &left_over, &cache_cache.num);
+ &left_over, &cache_cache.num);
if (!cache_cache.num)
BUG();
@@ -1053,11 +1057,11 @@ void __init kmem_cache_init(void)
sizes = malloc_sizes;
names = cache_names;
- /* Initialize the caches that provide memory for the array cache
+ /*
+ * Initialize the caches that provide memory for the array cache
* and the kmem_list3 structures first.
* Without this, further allocations will bug
*/
-
sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN,
(ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
@@ -1104,7 +1108,7 @@ void __init kmem_cache_init(void)
local_irq_disable();
BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
memcpy(ptr, ac_data(&cache_cache),
- sizeof(struct arraycache_init));
+ sizeof(struct arraycache_init));
cache_cache.array[smp_processor_id()] = ptr;
local_irq_enable();
@@ -1114,7 +1118,7 @@ void __init kmem_cache_init(void)
BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
!= &initarray_generic.cache);
memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
- sizeof(struct arraycache_init));
+ sizeof(struct arraycache_init));
malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
ptr;
local_irq_enable();
@@ -1124,17 +1128,15 @@ void __init kmem_cache_init(void)
int node;
/* Replace the static kmem_list3 structures for the boot cpu */
init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
- numa_node_id());
+ numa_node_id());
for_each_online_node(node) {
init_list(malloc_sizes[INDEX_AC].cs_cachep,
- &initkmem_list3[SIZE_AC+node], node);
+ &initkmem_list3[SIZE_AC+node], node);
- if (INDEX_AC != INDEX_L3) {
+ if (INDEX_AC != INDEX_L3)
init_list(malloc_sizes[INDEX_L3].cs_cachep,
- &initkmem_list3[SIZE_L3+node],
- node);
- }
+ &initkmem_list3[SIZE_L3+node], node);
}
}
@@ -1150,12 +1152,14 @@ void __init kmem_cache_init(void)
/* Done! */
g_cpucache_up = FULL;
- /* Register a cpu startup notifier callback
+ /*
+ * Register a cpu startup notifier callback
* that initializes ac_data for all new cpus
*/
register_cpu_notifier(&cpucache_notifier);
- /* The reap timers are started later, with a module init call:
+ /*
+ * The reap timers are started later, with a module init call:
* That part of the kernel is not yet operational.
*/
}
@@ -1164,16 +1168,12 @@ static int __init cpucache_init(void)
{
int cpu;
- /*
- * Register the timers that return unneeded
- * pages to gfp.
- */
+ /* Register the timers that return unneeded pages to gfp */
for_each_online_cpu(cpu)
start_cpu_timer(cpu);
return 0;
}
-
__initcall(cpucache_init);
/*
@@ -1190,11 +1190,10 @@ static void *kmem_getpages(kmem_cache_t
int i;
flags |= cachep->gfpflags;
- if (likely(nodeid == -1)) {
+ if (likely(nodeid == -1))
page = alloc_pages(flags, cachep->gfporder);
- } else {
+ else
page = alloc_pages_node(nodeid, flags, cachep->gfporder);
- }
if (!page)
return NULL;
addr = page_address(page);
@@ -1215,7 +1214,7 @@ static void *kmem_getpages(kmem_cache_t
*/
static void kmem_freepages(kmem_cache_t *cachep, void *addr)
{
- unsigned long i = (1<<cachep->gfporder);
+ unsigned long i = (1 << cachep->gfporder);
struct page *page = virt_to_page(addr);
const unsigned long nr_freed = i;
@@ -1234,7 +1233,7 @@ static void kmem_freepages(kmem_cache_t
static void kmem_rcu_free(struct rcu_head *head)
{
- struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
+ struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
kmem_cache_t *cachep = slab_rcu->cachep;
kmem_freepages(cachep, slab_rcu->addr);
@@ -1246,11 +1245,11 @@ static void kmem_rcu_free(struct rcu_hea
#ifdef CONFIG_DEBUG_PAGEALLOC
static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
- unsigned long caller)
+ unsigned long caller)
{
int size = obj_reallen(cachep);
- addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
+ addr = (unsigned long *)&((char *)addr)[obj_dbghead(cachep)];
if (size < 5*sizeof(unsigned long))
return;
@@ -1272,7 +1271,6 @@ static void store_stackinfo(kmem_cache_t
break;
}
}
-
}
*addr++=0x87654321;
}
@@ -1281,7 +1279,7 @@ static void store_stackinfo(kmem_cache_t
static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
{
int size = obj_reallen(cachep);
- addr = &((char*)addr)[obj_dbghead(cachep)];
+ addr = &((char *)addr)[obj_dbghead(cachep)];
memset(addr, val, size);
*(unsigned char *)(addr+size-1) = POISON_END;
@@ -1291,9 +1289,8 @@ static void dump_line(char *data, int of
{
int i;
printk(KERN_ERR "%03x:", offset);
- for (i=0;i<limit;i++) {
+ for (i = 0; i < limit; i++)
printk(" %02x", (unsigned char)data[offset+i]);
- }
printk("\n");
}
#endif
@@ -1318,13 +1315,13 @@ static void print_objinfo(kmem_cache_t *
(unsigned long)*dbg_userword(cachep, objp));
printk("\n");
}
- realobj = (char*)objp+obj_dbghead(cachep);
+ realobj = (char *)objp + obj_dbghead(cachep);
size = obj_reallen(cachep);
- for (i=0; i<size && lines;i+=16, lines--) {
+ for (i = 0; i < size && lines; i += 16, lines--) {
int limit;
limit = 16;
- if (i+limit > size)
- limit = size-i;
+ if (i + limit > size)
+ limit = size - i;
dump_line(realobj, i, limit);
}
}
@@ -1335,27 +1332,27 @@ static void check_poison_obj(kmem_cache_
int size, i;
int lines = 0;
- realobj = (char*)objp+obj_dbghead(cachep);
+ realobj = (char *)objp + obj_dbghead(cachep);
size = obj_reallen(cachep);
- for (i=0;i<size;i++) {
+ for (i = 0; i < size; i++) {
char exp = POISON_FREE;
- if (i == size-1)
+ if (i == size - 1)
exp = POISON_END;
if (realobj[i] != exp) {
int limit;
/* Mismatch ! */
/* Print header */
if (lines == 0) {
- printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
- realobj, size);
+ printk(KERN_ERR "Slab corruption: start=%p, "
+ "len=%d\n", realobj, size);
print_objinfo(cachep, objp, 0);
}
/* Hexdump the affected line */
- i = (i/16)*16;
+ i = (i / 16) * 16;
limit = 16;
- if (i+limit > size)
- limit = size-i;
+ if (i + limit > size)
+ limit = size - i;
dump_line(realobj, i, limit);
i += 16;
lines++;
@@ -1365,36 +1362,35 @@ static void check_poison_obj(kmem_cache_
}
}
if (lines != 0) {
- /* Print some data about the neighboring objects, if they
- * exist:
- */
+ /* Print data about the neighboring objects, if they exist */
struct slab *slabp = GET_PAGE_SLAB(virt_to_page(objp));
int objnr;
- objnr = (objp-slabp->s_mem)/cachep->objsize;
+ objnr = (objp - slabp->s_mem) / cachep->objsize;
if (objnr) {
- objp = slabp->s_mem+(objnr-1)*cachep->objsize;
- realobj = (char*)objp+obj_dbghead(cachep);
+ objp = slabp->s_mem + (objnr - 1) * cachep->objsize;
+ realobj = (char *)objp + obj_dbghead(cachep);
printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
- realobj, size);
+ realobj, size);
print_objinfo(cachep, objp, 2);
}
- if (objnr+1 < cachep->num) {
- objp = slabp->s_mem+(objnr+1)*cachep->objsize;
- realobj = (char*)objp+obj_dbghead(cachep);
+ if (objnr + 1 < cachep->num) {
+ objp = slabp->s_mem + (objnr + 1) * cachep->objsize;
+ realobj = (char *)objp + obj_dbghead(cachep);
printk(KERN_ERR "Next obj: start=%p, len=%d\n",
- realobj, size);
+ realobj, size);
print_objinfo(cachep, objp, 2);
}
}
}
#endif
-/* Destroy all the objs in a slab, and release the mem back to the system.
+/*
+ * Destroy all the objs in a slab, and release the mem back to the system.
* Before calling the slab must have been unlinked from the cache.
* The cache-lock is not held/needed.
*/
-static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
+static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
{
void *addr = slabp->s_mem - slabp->colouroff;
@@ -1406,7 +1402,8 @@ static void slab_destroy (kmem_cache_t *
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
+ kernel_map_pages(virt_to_page(objp),
+ cachep->objsize/PAGE_SIZE, 1);
else
check_poison_obj(cachep, objp);
#else
@@ -1422,13 +1419,13 @@ static void slab_destroy (kmem_cache_t *
"was overwritten");
}
if (cachep->dtor && !(cachep->flags & SLAB_POISON))
- (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
+ (cachep->dtor)(objp + obj_dbghead(cachep), cachep, 0);
}
#else
if (cachep->dtor) {
int i;
for (i = 0; i < cachep->num; i++) {
- void* objp = slabp->s_mem+cachep->objsize*i;
+ void *objp = slabp->s_mem + cachep->objsize * i;
(cachep->dtor)(objp, cachep, 0);
}
}
@@ -1437,7 +1434,7 @@ static void slab_destroy (kmem_cache_t *
if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
struct slab_rcu *slab_rcu;
- slab_rcu = (struct slab_rcu *) slabp;
+ slab_rcu = (struct slab_rcu *)slabp;
slab_rcu->cachep = cachep;
slab_rcu->addr = addr;
call_rcu(&slab_rcu->head, kmem_rcu_free);
@@ -1448,17 +1445,19 @@ static void slab_destroy (kmem_cache_t *
}
}
-/* For setting up all the kmem_list3s for cache whose objsize is same
- as size of kmem_list3. */
+/*
+ * For setting up all the kmem_list3s for cache whose objsize is same
+ * as size of kmem_list3.
+ */
static inline void set_up_list3s(kmem_cache_t *cachep, int index)
{
int node;
for_each_online_node(node) {
- cachep->nodelists[node] = &initkmem_list3[index+node];
+ cachep->nodelists[node] = &initkmem_list3[index + node];
cachep->nodelists[node]->next_reap = jiffies +
REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
}
}
@@ -1495,10 +1494,10 @@ static inline void set_up_list3s(kmem_ca
* cacheline. This can be beneficial if you're counting cycles as closely
* as davem.
*/
-kmem_cache_t *
-kmem_cache_create (const char *name, size_t size, size_t align,
- unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
- void (*dtor)(void*, kmem_cache_t *, unsigned long))
+kmem_cache_t *kmem_cache_create(const char *name, size_t size, size_t align,
+ unsigned long flags,
+ void (*ctor)(void *, kmem_cache_t *, unsigned long),
+ void (*dtor)(void *, kmem_cache_t *, unsigned long))
{
size_t left_over, slab_size, ralign;
kmem_cache_t *cachep = NULL;
@@ -1550,7 +1549,8 @@ kmem_cache_create (const char *name, siz
if (flags & ~CREATE_MASK)
BUG();
- /* Check that size is in terms of words. This is needed to avoid
+ /*
+ * Check that size is in terms of words. This is needed to avoid
* unaligned accesses for some archs when redzoning is used, and makes
* sure any on-slab bufctl's are also correctly aligned.
*/
@@ -1562,7 +1562,8 @@ kmem_cache_create (const char *name, siz
/* calculate out the final buffer alignment: */
/* 1) arch recommendation: can be overridden for debug */
if (flags & SLAB_HWCACHE_ALIGN) {
- /* Default alignment: as specified by the arch code.
+ /*
+ * Default alignment: as specified by the arch code.
* Except if an object is really small, then squeeze multiple
* objects into one cacheline.
*/
@@ -1584,7 +1585,8 @@ kmem_cache_create (const char *name, siz
if (ralign > BYTES_PER_WORD)
flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
}
- /* 4) Store it. Note that the debug code below can reduce
+ /*
+ * 4) Store it. Note that the debug code below can reduce
* the alignment to BYTES_PER_WORD.
*/
align = ralign;
@@ -1607,7 +1609,8 @@ kmem_cache_create (const char *name, siz
size += 2*BYTES_PER_WORD;
}
if (flags & SLAB_STORE_USER) {
- /* user store requires word alignment and
+ /*
+ * user store requires word alignment and
* one word storage behind the end of the real
* object.
*/
@@ -1669,7 +1672,7 @@ cal_wastage:
}
/*
- * Large num of objs is good, but v. large slabs are
+ * Large num of objs is good, but very large slabs are
* currently bad for the gfp()s.
*/
if (cachep->gfporder >= slab_break_gfp_order)
@@ -1731,14 +1734,16 @@ next:
enable_cpucache(cachep);
} else {
if (g_cpucache_up == NONE) {
- /* Note: the first kmem_cache_create must create
+ /*
+ * Note: the first kmem_cache_create must create
* the cache that's used by kmalloc(24), otherwise
* the creation of further caches will BUG().
*/
cachep->array[smp_processor_id()] =
&initarray_generic.cache;
- /* If the cache that's used by
+ /*
+ * If the cache that's used by
* kmalloc(sizeof(kmem_list3)) is the first cache,
* then we need to set up all its list3s, otherwise
* the creation of further caches will BUG().
@@ -1792,9 +1797,11 @@ next:
list_for_each(p, &cache_chain) {
kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
char tmp;
- /* This happens when the module gets unloaded and doesn't
- destroy its slab cache and noone else reuses the vmalloc
- area of the module. Print a warning. */
+ /*
+ * This happens when the module gets unloaded & doesn't
+ * destroy its slab cache and noone else reuses the
+ * vmalloc area of the module. Print a warning.
+ */
if (__get_user(tmp,pc->name)) {
printk("SLAB: cache with size %d has lost its name\n",
pc->objsize);
@@ -1850,16 +1857,16 @@ static inline void check_spinlock_acquir
}
#else
-#define check_irq_off() do { } while(0)
-#define check_irq_on() do { } while(0)
-#define check_spinlock_acquired(x) do { } while(0)
-#define check_spinlock_acquired_node(x, y) do { } while(0)
+#define check_irq_off() do { } while(0)
+#define check_irq_on() do { } while(0)
+#define check_spinlock_acquired(x) do { } while(0)
+#define check_spinlock_acquired_node(x, y) do { } while(0)
#endif
/*
* Waits for all CPUs to execute func().
*/
-static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
+static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
{
check_irq_on();
preempt_disable();
@@ -1874,12 +1881,12 @@ static void smp_call_function_all_cpus(v
preempt_enable();
}
-static void drain_array_locked(kmem_cache_t* cachep,
- struct array_cache *ac, int force, int node);
+static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
+ int force, int node);
static void do_drain(void *arg)
{
- kmem_cache_t *cachep = (kmem_cache_t*)arg;
+ kmem_cache_t *cachep = (kmem_cache_t *)arg;
struct array_cache *ac;
int node = numa_node_id();
@@ -1899,7 +1906,7 @@ static void drain_cpu_caches(kmem_cache_
smp_call_function_all_cpus(do_drain, cachep);
check_irq_on();
spin_lock_irq(&cachep->spinlock);
- for_each_online_node(node) {
+ for_each_online_node(node) {
l3 = cachep->nodelists[node];
if (l3) {
spin_lock(&l3->list_lock);
@@ -1942,6 +1949,13 @@ static int __node_shrink(kmem_cache_t *c
return ret;
}
+/**
+ * __cache_shrink - Release all free slabs
+ * @cachep: The cache to shrink.
+ *
+ * Return 1 if there are still partial or full slabs belonging to this cache
+ * Return 0 if there are no more slabs belonging to this cache
+ */
static int __cache_shrink(kmem_cache_t *cachep)
{
int ret = 0, i = 0;
@@ -1994,7 +2008,7 @@ EXPORT_SYMBOL(kmem_cache_shrink);
* The caller must guarantee that noone will allocate memory from the cache
* during the kmem_cache_destroy().
*/
-int kmem_cache_destroy(kmem_cache_t * cachep)
+int kmem_cache_destroy(kmem_cache_t *cachep)
{
int i;
struct kmem_list3 *l3;
@@ -2007,9 +2021,7 @@ int kmem_cache_destroy(kmem_cache_t * ca
/* Find the cache in the chain of caches. */
down(&cache_chain_sem);
- /*
- * the chain is never empty, cache_cache is never destroyed
- */
+ /* the chain is never empty, cache_cache is never destroyed */
list_del(&cachep->next);
up(&cache_chain_sem);
@@ -2045,8 +2057,8 @@ int kmem_cache_destroy(kmem_cache_t * ca
EXPORT_SYMBOL(kmem_cache_destroy);
/* Get the memory for a slab management obj. */
-static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
- int colour_off, gfp_t local_flags)
+static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
+ int colour_off, gfp_t local_flags)
{
struct slab *slabp;
@@ -2056,28 +2068,28 @@ static struct slab* alloc_slabmgmt(kmem_
if (!slabp)
return NULL;
} else {
- slabp = objp+colour_off;
+ slabp = objp + colour_off;
colour_off += cachep->slab_size;
}
slabp->inuse = 0;
slabp->colouroff = colour_off;
- slabp->s_mem = objp+colour_off;
+ slabp->s_mem = objp + colour_off;
return slabp;
}
static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
- return (kmem_bufctl_t *)(slabp+1);
+ return (kmem_bufctl_t *)(slabp + 1);
}
-static void cache_init_objs(kmem_cache_t *cachep,
- struct slab *slabp, unsigned long ctor_flags)
+static void cache_init_objs(kmem_cache_t *cachep, struct slab *slabp,
+ unsigned long ctor_flags)
{
int i;
for (i = 0; i < cachep->num; i++) {
- void *objp = slabp->s_mem+cachep->objsize*i;
+ void *objp = slabp->s_mem + cachep->objsize * i;
#if DEBUG
/* need to poison the objs? */
if (cachep->flags & SLAB_POISON)
@@ -2095,7 +2107,8 @@ static void cache_init_objs(kmem_cache_t
* Otherwise, deadlock. They must also be threaded.
*/
if (cachep->ctor && !(cachep->flags & SLAB_POISON))
- cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
+ cachep->ctor(objp + obj_dbghead(cachep), cachep,
+ ctor_flags);
if (cachep->flags & SLAB_RED_ZONE) {
if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
@@ -2105,15 +2118,17 @@ static void cache_init_objs(kmem_cache_t
slab_error(cachep, "constructor overwrote the"
" start of an object");
}
- if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
+ if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) &&
+ cachep->flags & SLAB_POISON)
+ kernel_map_pages(virt_to_page(objp),
+ cachep->objsize / PAGE_SIZE, 0);
#else
if (cachep->ctor)
cachep->ctor(objp, cachep, ctor_flags);
#endif
- slab_bufctl(slabp)[i] = i+1;
+ slab_bufctl(slabp)[i] = i + 1;
}
- slab_bufctl(slabp)[i-1] = BUFCTL_END;
+ slab_bufctl(slabp)[i - 1] = BUFCTL_END;
slabp->free = 0;
}
@@ -2133,7 +2148,6 @@ static void set_slab_attr(kmem_cache_t *
int i;
struct page *page;
- /* Nasty!!!!!! I hope this is OK. */
i = 1 << cachep->gfporder;
page = virt_to_page(objp);
do {
@@ -2149,14 +2163,15 @@ static void set_slab_attr(kmem_cache_t *
*/
static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
{
- struct slab *slabp;
- void *objp;
- size_t offset;
- unsigned int local_flags;
- unsigned long ctor_flags;
+ struct slab *slabp;
+ void *objp;
+ size_t offset;
+ unsigned int local_flags;
+ unsigned long ctor_flags;
struct kmem_list3 *l3;
- /* Be lazy and only check for valid flags here,
+ /*
+ * Be lazy and only check for valid flags here,
* keeping it out of the critical path in kmem_cache_alloc().
*/
if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
@@ -2191,22 +2206,20 @@ static int cache_grow(kmem_cache_t *cach
local_irq_enable();
/*
- * The test for missing atomic flag is performed here, rather than
- * the more obvious place, simply to reduce the critical path length
- * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
- * will eventually be caught here (where it matters).
+ * Ensure caller isn't asking for DMA memory if the slab wasn't created
+ * with the SLAB_DMA flag.
+ * Also ensure the caller *is* asking for DMA memory if the slab was
+ * created with the SLAB_DMA flag.
*/
kmem_flagcheck(cachep, flags);
- /* Get mem for the objs.
- * Attempt to allocate a physical page from 'nodeid',
- */
+ /* Get mem for the objects by allocating a physical page from 'nodeid' */
if (!(objp = kmem_getpages(cachep, flags, nodeid)))
- goto failed;
+ goto out_nomem;
/* Get slab management. */
if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
- goto opps1;
+ goto out_freepages;
slabp->nodeid = nodeid;
set_slab_attr(cachep, slabp, objp);
@@ -2225,16 +2238,15 @@ static int cache_grow(kmem_cache_t *cach
l3->free_objects += cachep->num;
spin_unlock(&l3->list_lock);
return 1;
-opps1:
+out_freepages:
kmem_freepages(cachep, objp);
-failed:
+out_nomem:
if (local_flags & __GFP_WAIT)
local_irq_disable();
return 0;
}
#if DEBUG
-
/*
* Perform extra freeing checks:
* - detect bad pointers.
@@ -2247,18 +2259,19 @@ static void kfree_debugcheck(const void
if (!virt_addr_valid(objp)) {
printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
- (unsigned long)objp);
+ (unsigned long)objp);
BUG();
}
page = virt_to_page(objp);
if (!PageSlab(page)) {
- printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
+ printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
+ (unsigned long)objp);
BUG();
}
}
static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
- void *caller)
+ void *caller)
{
struct page *page;
unsigned int objnr;
@@ -2272,17 +2285,20 @@ static void *cache_free_debugcheck(kmem_
printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
GET_PAGE_CACHE(page),cachep);
printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
- printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page), GET_PAGE_CACHE(page)->name);
+ printk(KERN_ERR "%p is %s.\n", GET_PAGE_CACHE(page),
+ GET_PAGE_CACHE(page)->name);
WARN_ON(1);
}
slabp = GET_PAGE_SLAB(page);
if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
+ if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
+ *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
slab_error(cachep, "double free, or memory outside"
" object was overwritten");
printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
- objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
+ objp, *dbg_redzone1(cachep, objp),
+ *dbg_redzone2(cachep, objp));
}
*dbg_redzone1(cachep, objp) = RED_INACTIVE;
*dbg_redzone2(cachep, objp) = RED_INACTIVE;
@@ -2293,27 +2309,30 @@ static void *cache_free_debugcheck(kmem_
objnr = (objp-slabp->s_mem)/cachep->objsize;
BUG_ON(objnr >= cachep->num);
- BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
+ BUG_ON(objp != slabp->s_mem + objnr * cachep->objsize);
if (cachep->flags & SLAB_DEBUG_INITIAL) {
- /* Need to call the slab's constructor so the
+ /*
+ * Need to call the slab's constructor so the
* caller can perform a verify of its state (debugging).
* Called without the cache-lock held.
*/
- cachep->ctor(objp+obj_dbghead(cachep),
- cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
+ cachep->ctor(objp + obj_dbghead(cachep), cachep,
+ SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
}
if (cachep->flags & SLAB_POISON && cachep->dtor) {
- /* we want to cache poison the object,
+ /*
+ * we want to cache poison the object,
* call the destruction callback
*/
- cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
+ cachep->dtor(objp + obj_dbghead(cachep), cachep, 0);
}
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
store_stackinfo(cachep, objp, (unsigned long)caller);
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
+ kernel_map_pages(virt_to_page(objp),
+ cachep->objsize / PAGE_SIZE, 0);
} else {
poison_obj(cachep, objp, POISON_FREE);
}
@@ -2337,10 +2356,13 @@ static void check_slabp(kmem_cache_t *ca
}
if (entries != cachep->num - slabp->inuse) {
bad:
- printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
- cachep->name, cachep->num, slabp, slabp->inuse);
- for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
- if ((i%16)==0)
+ printk(KERN_ERR "slab: Internal list corruption detected in "
+ "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
+ cachep->name, cachep->num, slabp, slabp->inuse);
+ for (i = 0;
+ i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
+ i++) {
+ if ((i % 16) == 0)
printk("\n%03x:", i);
printk(" %02x", ((unsigned char*)slabp)[i]);
}
@@ -2349,9 +2371,9 @@ bad:
}
}
#else
-#define kfree_debugcheck(x) do { } while(0)
-#define cache_free_debugcheck(x,objp,z) (objp)
-#define check_slabp(x,y) do { } while(0)
+#define kfree_debugcheck(x) do { } while(0)
+#define cache_free_debugcheck(x,objp,z) (objp)
+#define check_slabp(x,y) do { } while(0)
#endif
static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
@@ -2365,7 +2387,8 @@ static void *cache_alloc_refill(kmem_cac
retry:
batchcount = ac->batchcount;
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
- /* if there was little recent activity on this
+ /*
+ * if there was little recent activity on this
* cache, then perform only a partial refill.
* Otherwise we could generate refill bouncing.
*/
@@ -2383,9 +2406,8 @@ retry:
batchcount = shared_array->avail;
shared_array->avail -= batchcount;
ac->avail = batchcount;
- memcpy(ac->entry,
- &(shared_array->entry[shared_array->avail]),
- sizeof(void*)*batchcount);
+ memcpy(ac->entry, &(shared_array->entry[shared_array->avail]),
+ sizeof(void *) * batchcount);
shared_array->touched = 1;
goto alloc_done;
}
@@ -2441,20 +2463,20 @@ alloc_done:
int x;
x = cache_grow(cachep, flags, numa_node_id());
- // cache_grow can reenable interrupts, then ac could change.
+ /* cache_grow can reenable interrupts, then ac could change. */
ac = ac_data(cachep);
- if (!x && ac->avail == 0) // no objects in sight? abort
+ if (!x && ac->avail == 0) /* no objects in sight? abort */
return NULL;
- if (!ac->avail) // objects refilled by interrupt?
+ if (!ac->avail) /* objects refilled by interrupt? */
goto retry;
}
ac->touched = 1;
return ac->entry[--ac->avail];
}
-static inline void
-cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
+static inline void cache_alloc_debugcheck_before(kmem_cache_t *cachep,
+ gfp_t flags)
{
might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
@@ -2463,16 +2485,16 @@ cache_alloc_debugcheck_before(kmem_cache
}
#if DEBUG
-static void *
-cache_alloc_debugcheck_after(kmem_cache_t *cachep,
- gfp_t flags, void *objp, void *caller)
+static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
+ void *objp, void *caller)
{
if (!objp)
return objp;
if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
- kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
+ kernel_map_pages(virt_to_page(objp),
+ cachep->objsize / PAGE_SIZE, 1);
else
check_poison_obj(cachep, objp);
#else
@@ -2484,18 +2506,20 @@ cache_alloc_debugcheck_after(kmem_cache_
*dbg_userword(cachep, objp) = caller;
if (cachep->flags & SLAB_RED_ZONE) {
- if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
- slab_error(cachep, "double free, or memory outside"
- " object was overwritten");
+ if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
+ *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
+ slab_error(cachep, "double free, or memory outside "
+ "object was overwritten");
printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
- objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
+ objp, *dbg_redzone1(cachep, objp),
+ *dbg_redzone2(cachep, objp));
}
*dbg_redzone1(cachep, objp) = RED_ACTIVE;
*dbg_redzone2(cachep, objp) = RED_ACTIVE;
}
objp += obj_dbghead(cachep);
if (cachep->ctor && cachep->flags & SLAB_POISON) {
- unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
+ unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
if (!(flags & __GFP_WAIT))
ctor_flags |= SLAB_CTOR_ATOMIC;
@@ -2529,7 +2553,7 @@ static inline void *____cache_alloc(kmem
static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
{
unsigned long save_flags;
- void* objp;
+ void *objp;
cache_alloc_debugcheck_before(cachep, flags);
@@ -2537,7 +2561,7 @@ static inline void *__cache_alloc(kmem_c
objp = ____cache_alloc(cachep, flags);
local_irq_restore(save_flags);
objp = cache_alloc_debugcheck_after(cachep, flags, objp,
- __builtin_return_address(0));
+ __builtin_return_address(0));
prefetchw(objp);
return objp;
}
@@ -2616,7 +2640,8 @@ done:
/*
* Caller needs to acquire correct kmem_list's list_lock
*/
-static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int node)
+static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
+ int node)
{
int i;
struct kmem_list3 *l3;
@@ -2633,7 +2658,6 @@ static void free_block(kmem_cache_t *cac
check_spinlock_acquired_node(cachep, node);
check_slabp(cachep, slabp);
-
#if DEBUG
if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
printk(KERN_ERR "slab: double free detected in cache "
@@ -2657,7 +2681,8 @@ static void free_block(kmem_cache_t *cac
list_add(&slabp->list, &l3->slabs_free);
}
} else {
- /* Unconditionally move a slab to the end of the
+ /*
+ * Unconditionally move a slab to the end of the
* partial list on free - maximum time for the
* other objects to be freed, too.
*/
@@ -2681,13 +2706,12 @@ static void cache_flusharray(kmem_cache_
spin_lock(&l3->list_lock);
if (l3->shared) {
struct array_cache *shared_array = l3->shared;
- int max = shared_array->limit-shared_array->avail;
+ int max = shared_array->limit - shared_array->avail;
if (max) {
if (batchcount > max)
batchcount = max;
memcpy(&(shared_array->entry[shared_array->avail]),
- ac->entry,
- sizeof(void*)*batchcount);
+ ac->entry, sizeof(void *) * batchcount);
shared_array->avail += batchcount;
goto free_done;
}
@@ -2716,11 +2740,11 @@ free_done:
spin_unlock(&l3->list_lock);
ac->avail -= batchcount;
memmove(ac->entry, &(ac->entry[batchcount]),
- sizeof(void*)*ac->avail);
+ sizeof(void *) * ac->avail);
}
-/*
+/**
* __cache_free
* Release an obj back to its cache. If the obj has a constructed
* state, it must be in this state _before_ it is released.
@@ -2734,7 +2758,8 @@ static inline void __cache_free(kmem_cac
check_irq_off();
objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
- /* Make sure we are not freeing a object from another
+ /*
+ * Make sure we are not freeing a object from another
* node to the array cache on this cpu.
*/
#ifdef CONFIG_NUMA
@@ -2744,23 +2769,21 @@ static inline void __cache_free(kmem_cac
if (unlikely(slabp->nodeid != numa_node_id())) {
struct array_cache *alien = NULL;
int nodeid = slabp->nodeid;
- struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()];
+ struct kmem_list3 *l3 =
+ cachep->nodelists[numa_node_id()];
STATS_INC_NODEFREES(cachep);
if (l3->alien && l3->alien[nodeid]) {
alien = l3->alien[nodeid];
spin_lock(&alien->lock);
if (unlikely(alien->avail == alien->limit))
- __drain_alien_cache(cachep,
- alien, nodeid);
+ __drain_alien_cache(cachep, alien, nodeid);
alien->entry[alien->avail++] = objp;
spin_unlock(&alien->lock);
} else {
- spin_lock(&(cachep->nodelists[nodeid])->
- list_lock);
+ spin_lock(&(cachep->nodelists[nodeid])->list_lock);
free_block(cachep, &objp, 1, nodeid);
- spin_unlock(&(cachep->nodelists[nodeid])->
- list_lock);
+ spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
}
return;
}
@@ -2792,8 +2815,7 @@ void *kmem_cache_alloc(kmem_cache_t *cac
EXPORT_SYMBOL(kmem_cache_alloc);
/**
- * kmem_ptr_validate - check if an untrusted pointer might
- * be a slab entry.
+ * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
* @cachep: the cache we're checking against
* @ptr: pointer to validate
*
@@ -2807,7 +2829,7 @@ EXPORT_SYMBOL(kmem_cache_alloc);
*/
int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
{
- unsigned long addr = (unsigned long) ptr;
+ unsigned long addr = (unsigned long)ptr;
unsigned long min_addr = PAGE_OFFSET;
unsigned long align_mask = BYTES_PER_WORD-1;
unsigned long size = cachep->objsize;
@@ -2856,7 +2878,8 @@ void *kmem_cache_alloc_node(kmem_cache_t
if (unlikely(!cachep->nodelists[nodeid])) {
/* Fall back to __cache_alloc if we run into trouble */
- printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name);
+ printk(KERN_WARNING "slab: not allocating in inactive node %d "
+ "for cache %s\n", nodeid, cachep->name);
return __cache_alloc(cachep,flags);
}
@@ -2867,7 +2890,8 @@ void *kmem_cache_alloc_node(kmem_cache_t
else
ptr = __cache_alloc_node(cachep, flags, nodeid);
local_irq_restore(save_flags);
- ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0));
+ ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
+ __builtin_return_address(0));
return ptr;
}
@@ -2910,10 +2934,9 @@ void *__kmalloc(size_t size, gfp_t flags
{
kmem_cache_t *cachep;
- /* If you want to save a few bytes .text space: replace
- * __ with kmem_.
- * Then kmalloc uses the uninlined functions instead of the inline
- * functions.
+ /*
+ * If you want to save a few bytes .text space: replace __ with kmem_
+ * Then kmalloc uses the uninlined functions vs. the inline functions
*/
cachep = __find_general_cachep(size, flags);
if (unlikely(cachep == NULL))
@@ -2934,7 +2957,7 @@ EXPORT_SYMBOL(__kmalloc);
void *__alloc_percpu(size_t size, size_t align)
{
int i;
- struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
+ struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return NULL;
@@ -3023,7 +3046,7 @@ void kfree(const void *objp)
local_irq_save(flags);
kfree_debugcheck(objp);
c = GET_PAGE_CACHE(virt_to_page(objp));
- __cache_free(c, (void*)objp);
+ __cache_free(c, (void *)objp);
local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);
@@ -3036,8 +3059,7 @@ EXPORT_SYMBOL(kfree);
* Don't free memory not originally allocated by alloc_percpu()
* The complemented objp is to check for that.
*/
-void
-free_percpu(const void *objp)
+void free_percpu(const void *objp)
{
int i;
struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
@@ -3080,40 +3102,39 @@ static int alloc_kmemlist(kmem_cache_t *
if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
goto fail;
#endif
- if (!(new = alloc_arraycache(node, (cachep->shared*
- cachep->batchcount), 0xbaadf00d)))
+ if (!(new = alloc_arraycache(node, cachep->shared *
+ cachep->batchcount, 0xbaadf00d)))
goto fail;
if ((l3 = cachep->nodelists[node])) {
spin_lock_irq(&l3->list_lock);
if ((nc = cachep->nodelists[node]->shared))
- free_block(cachep, nc->entry,
- nc->avail, node);
+ free_block(cachep, nc->entry, nc->avail, node);
l3->shared = new;
if (!cachep->nodelists[node]->alien) {
l3->alien = new_alien;
new_alien = NULL;
}
- l3->free_limit = (1 + nr_cpus_node(node))*
- cachep->batchcount + cachep->num;
+ l3->free_limit = cachep->num +
+ (1 + nr_cpus_node(node)) * cachep->batchcount;
spin_unlock_irq(&l3->list_lock);
kfree(nc);
free_alien_cache(new_alien);
continue;
}
if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
- GFP_KERNEL, node)))
+ GFP_KERNEL, node)))
goto fail;
kmem_list3_init(l3);
l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
- ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
+ ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
l3->shared = new;
l3->alien = new_alien;
- l3->free_limit = (1 + nr_cpus_node(node))*
- cachep->batchcount + cachep->num;
+ l3->free_limit = cachep->num +
+ (1 + nr_cpus_node(node)) * cachep->batchcount;
cachep->nodelists[node] = l3;
}
return err;
@@ -3141,16 +3162,17 @@ static void do_ccupdate_local(void *info
static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
- int shared)
+ int shared)
{
struct ccupdate_struct new;
int i, err;
- memset(&new.new,0,sizeof(new.new));
+ memset(&new.new, 0, sizeof(new.new));
for_each_online_cpu(i) {
new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount);
if (!new.new[i]) {
- for (i--; i >= 0; i--) kfree(new.new[i]);
+ for (i--; i >= 0; i--)
+ kfree(new.new[i]);
return -ENOMEM;
}
}
@@ -3178,7 +3200,7 @@ static int do_tune_cpucache(kmem_cache_t
err = alloc_kmemlist(cachep);
if (err) {
printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
- cachep->name, -err);
+ cachep->name, -err);
BUG();
}
return 0;
@@ -3190,7 +3212,8 @@ static void enable_cpucache(kmem_cache_t
int err;
int limit, shared;
- /* The head array serves three purposes:
+ /*
+ * The head array serves three purposes:
* - create a LIFO ordering, i.e. return objects that are cache-warm
* - reduce the number of spinlock operations.
* - reduce the number of linked list operations on the slab and
@@ -3209,7 +3232,8 @@ static void enable_cpucache(kmem_cache_t
else
limit = 120;
- /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
+ /*
+ * Cpu bound tasks (e.g. network routing) can exhibit cpu bound
* allocation behaviour: Most allocs on one cpu, most free operations
* on another cpu. For these cases, an efficient object passing between
* cpus is necessary. This is provided by a shared array. The array
@@ -3224,7 +3248,8 @@ static void enable_cpucache(kmem_cache_t
#endif
#if DEBUG
- /* With debugging enabled, large batchcount lead to excessively
+ /*
+ * With debugging enabled, large batchcount lead to excessively
* long periods with disabled local interrupts. Limit the
* batchcount
*/
@@ -3234,11 +3259,11 @@ static void enable_cpucache(kmem_cache_t
err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
if (err)
printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
- cachep->name, -err);
+ cachep->name, -err);
}
-static void drain_array_locked(kmem_cache_t *cachep,
- struct array_cache *ac, int force, int node)
+static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
+ int force, int node)
{
int tofree;
@@ -3246,14 +3271,14 @@ static void drain_array_locked(kmem_cach
if (ac->touched && !force) {
ac->touched = 0;
} else if (ac->avail) {
- tofree = force ? ac->avail : (ac->limit+4)/5;
+ tofree = force ? ac->avail : (ac->limit + 4) / 5;
if (tofree > ac->avail) {
- tofree = (ac->avail+1)/2;
+ tofree = (ac->avail + 1) / 2;
}
free_block(cachep, ac->entry, tofree, node);
ac->avail -= tofree;
memmove(ac->entry, &(ac->entry[tofree]),
- sizeof(void*)*ac->avail);
+ sizeof(void *) * ac->avail);
}
}
@@ -3275,7 +3300,8 @@ static void cache_reap(void *unused)
if (down_trylock(&cache_chain_sem)) {
/* Give up. Setup the next iteration. */
- schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
+ schedule_delayed_work(&__get_cpu_var(reap_work),
+ REAPTIMEOUT_CPUC + smp_processor_id());
return;
}
@@ -3314,7 +3340,8 @@ static void cache_reap(void *unused)
goto next_unlock;
}
- tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num);
+ tofree = 5 * searchp->num;
+ tofree = (l3->free_limit + tofree - 1) / tofree;
do {
p = l3->slabs_free.next;
if (p == &(l3->slabs_free))
@@ -3325,10 +3352,10 @@ static void cache_reap(void *unused)
list_del(&slabp->list);
STATS_INC_REAPED(searchp);
- /* Safe to drop the lock. The slab is no longer
- * linked to the cache.
- * searchp cannot disappear, we hold
- * cache_chain_lock
+ /*
+ * Safe to drop the lock:
+ * The slab is no longer linked to the cache
+ * searchp cannot disappear, we hold cache_chain_lock
*/
l3->free_objects -= searchp->num;
spin_unlock_irq(&l3->list_lock);
@@ -3344,7 +3371,8 @@ next:
up(&cache_chain_sem);
drain_remote_pages();
/* Setup the next iteration */
- schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC + smp_processor_id());
+ schedule_delayed_work(&__get_cpu_var(reap_work),
+ REAPTIMEOUT_CPUC + smp_processor_id());
}
#ifdef CONFIG_PROC_FS
@@ -3388,8 +3416,8 @@ static void *s_next(struct seq_file *m,
{
kmem_cache_t *cachep = p;
++*pos;
- return cachep->next.next == &cache_chain ? NULL
- : list_entry(cachep->next.next, kmem_cache_t, next);
+ return cachep->next.next == &cache_chain ? NULL :
+ list_entry(cachep->next.next, kmem_cache_t, next);
}
static void s_stop(struct seq_file *m, void *p)
@@ -3401,11 +3429,9 @@ static int s_show(struct seq_file *m, vo
{
kmem_cache_t *cachep = p;
struct list_head *q;
- struct slab *slabp;
- unsigned long active_objs;
- unsigned long num_objs;
- unsigned long active_slabs = 0;
- unsigned long num_slabs, free_objects = 0, shared_avail = 0;
+ struct slab *slabp;
+ unsigned long active_objs, num_objs, active_slabs = 0;
+ unsigned long num_slabs, free_objects = 0, shared_avail = 0;
const char *name;
char *error = NULL;
int node;
@@ -3432,7 +3458,7 @@ static int s_show(struct seq_file *m, vo
list_for_each(q,&l3->slabs_partial) {
slabp = list_entry(q, struct slab, list);
if (slabp->inuse == cachep->num && !error)
- error = "slabs_partial inuse accounting error";
+ error = "slabs_partial/inuse accounting error";
if (!slabp->inuse && !error)
error = "slabs_partial/inuse accounting error";
active_objs += slabp->inuse;
@@ -3458,14 +3484,14 @@ static int s_show(struct seq_file *m, vo
if (error)
printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
- seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
- name, active_objs, num_objs, cachep->objsize,
- cachep->num, (1<<cachep->gfporder));
+ seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", name, active_objs,
+ num_objs, cachep->objsize, cachep->num,
+ (1<<cachep->gfporder));
seq_printf(m, " : tunables %4u %4u %4u",
- cachep->limit, cachep->batchcount,
- cachep->shared);
+ cachep->limit, cachep->batchcount,
+ cachep->shared);
seq_printf(m, " : slabdata %6lu %6lu %6lu",
- active_slabs, num_slabs, shared_avail);
+ active_slabs, num_slabs, shared_avail);
#if STATS
{ /* list3 stats */
unsigned long high = cachep->high_mark;
@@ -3478,9 +3504,9 @@ static int s_show(struct seq_file *m, vo
unsigned long node_frees = cachep->node_frees;
seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
- %4lu %4lu %4lu %4lu",
- allocs, high, grown, reaped, errors,
- max_freeable, node_allocs, node_frees);
+ %4lu %4lu %4lu %4lu", allocs, high, grown,
+ reaped, errors, max_freeable, node_allocs,
+ node_frees);
}
/* cpu stats */
{
@@ -3490,7 +3516,7 @@ static int s_show(struct seq_file *m, vo
unsigned long freemiss = atomic_read(&cachep->freemiss);
seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
- allochit, allocmiss, freehit, freemiss);
+ allochit, allocmiss, freehit, freemiss);
}
#endif
seq_putc(m, '\n');
@@ -3511,7 +3537,6 @@ static int s_show(struct seq_file *m, vo
* num-pages-per-slab
* + further values on SMP and with statistics enabled
*/
-
struct seq_operations slabinfo_op = {
.start = s_start,
.next = s_next,
@@ -3528,7 +3553,7 @@ struct seq_operations slabinfo_op = {
* @ppos: unused
*/
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
- size_t count, loff_t *ppos)
+ size_t count, loff_t *ppos)
{
char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
int limit, batchcount, shared, res;
@@ -3555,10 +3580,8 @@ ssize_t slabinfo_write(struct file *file
kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
if (!strcmp(cachep->name, kbuf)) {
- if (limit < 1 ||
- batchcount < 1 ||
- batchcount > limit ||
- shared < 0) {
+ if (limit < 1 || batchcount < 1 ||
+ batchcount > limit || shared < 0) {
res = 0;
} else {
res = do_tune_cpucache(cachep, limit,
@@ -3572,7 +3595,7 @@ ssize_t slabinfo_write(struct file *file
res = count;
return res;
}
-#endif
+#endif /* CONFIG_PROC_FS */
/**
* ksize - get the actual amount of memory allocated for a given object
@@ -3595,7 +3618,7 @@ unsigned int ksize(const void *objp)
}
-/*
+/**
* kstrdup - allocate space for and copy an existing string
*
* @s: the string to duplicate
[Index of Archives]
[Kernel Newbies]
[Netfilter]
[Bugtraq]
[Photo]
[Stuff]
[Gimp]
[Yosemite News]
[MIPS Linux]
[ARM Linux]
[Linux Security]
[Linux RAID]
[Video 4 Linux]
[Linux for the blind]
[Linux Resources]