* Paul Jackson <[email protected]> wrote:
> Ok - that flies, or at least walks. It took 53 seconds to compute
> this cost matrix.
53 seconds is too much - i'm working on reducing it.
> Here's what it prints, on a small 8 CPU ia64 SN2 Altix, with
> the migration_debug prints formatted separately from the primary
> table, for ease of reading:
>
> Total of 8 processors activated (15548.60 BogoMIPS).
> ---------------------
> migration cost matrix (max_cache_size: 0, cpu: -1 MHz):
> ---------------------
> [00] [01] [02] [03] [04] [05] [06] [07]
> [00]: - 4.0(0) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1)
> [01]: 4.0(0) - 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1)
> [02]: 21.7(1) 21.7(1) - 4.0(0) 21.7(1) 21.7(1) 21.7(1) 21.7(1)
> [03]: 21.7(1) 21.7(1) 4.0(0) - 21.7(1) 21.7(1) 21.7(1) 21.7(1)
> [04]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) - 4.0(0) 21.7(1) 21.7(1)
> [05]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) 4.0(0) - 21.7(1) 21.7(1)
> [06]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) - 4.0(0)
> [07]: 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 21.7(1) 4.0(0) -
how close are these numbers to the real worst-case migration costs on
that box? What are the cache sizes and what is their hierarchies?
i've attached another snapshot - there is no speedup yet, but i've
changed the debug printout to be separate from the matrix printout, and
i've fixed the cache_size printout. (the printout of a 68K cache was
incorrect - that was just the last iteration step)
it will be interesting to see what effect the above assymetry in
migration costs will have on scheduling. With 4msec intra-node cutoff it
should be pretty migration-happy, inter-node 21 msec is rather high and
should avoid unnecessary migration.
is there any workload that shows the same scheduling related performance
regressions, other than Ken's $1m+ benchmark kit?
Ingo
--- linux/kernel/sched.c.orig
+++ linux/kernel/sched.c
@@ -47,6 +47,7 @@
#include <linux/syscalls.h>
#include <linux/times.h>
#include <linux/acct.h>
+#include <linux/vmalloc.h>
#include <asm/tlb.h>
#include <asm/unistd.h>
@@ -4639,6 +4640,453 @@ void __devinit init_sched_build_groups(s
last->next = first;
}
+/*
+ * Self-tuning task migration cost measurement between source and target CPUs.
+ *
+ * This is done by measuring the cost of manipulating buffers of varying
+ * sizes. For a given buffer-size here are the steps that are taken:
+ *
+ * 1) the source CPU reads a big buffer to flush caches
+ * 2) the source CPU reads+dirties a shared buffer
+ * 3) the target CPU reads+dirties the same shared buffer
+ * 4) the target CPU reads a big buffer to flush caches
+ *
+ * We measure how long steps #2 and #3 take (step #1 and #4 is not
+ * measured), in the following 4 scenarios:
+ *
+ * - source: CPU1, target: CPU2 | cost1
+ * - source: CPU2, target: CPU1 | cost2
+ * - source: CPU1, target: CPU1 | cost3
+ * - source: CPU2, target: CPU2 | cost4
+ *
+ * We then calculate the cost3+cost4-cost1-cost2 difference - this is
+ * the cost of migration.
+ *
+ * We then start off from a large buffer-size and iterate down to smaller
+ * buffer sizes, in 5% steps - measuring each buffer-size separately, and
+ * do a maximum search for the cost. The maximum cost for a migration
+ * occurs when the working set is just below the effective cache size.
+ */
+
+
+/*
+ * Flush the cache by reading a big buffer. (We want all writeback
+ * activities to subside. Works only if cache size is larger than
+ * 2*size, but that is good enough as the biggest migration effect
+ * is around cachesize size.)
+ */
+__init static void read_cache(void *__cache, unsigned long __size)
+{
+ unsigned long size = __size/sizeof(long);
+ unsigned long *cache = __cache;
+ volatile unsigned long data;
+ int i;
+
+ for (i = 0; i < 2*size; i += 4)
+ data = cache[i];
+}
+
+
+/*
+ * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
+ * is the operation that is timed, so we try to generate unpredictable
+ * cachemisses that still end up filling the L2 cache:
+ */
+__init static void touch_cache(void *__cache, unsigned long __size)
+{
+ unsigned long size = __size/sizeof(long), chunk1 = size/3,
+ chunk2 = 2*size/3;
+ unsigned long *cache = __cache;
+ int i;
+
+ for (i = 0; i < size/6; i += 4) {
+ switch (i % 6) {
+ case 0: cache[i]++;
+ case 1: cache[size-1-i]++;
+ case 2: cache[chunk1-i]++;
+ case 3: cache[chunk1+i]++;
+ case 4: cache[chunk2-i]++;
+ case 5: cache[chunk2+i]++;
+ }
+ }
+}
+
+struct flush_data {
+ unsigned long source, target;
+ void (*fn)(void *, unsigned long);
+ void *cache;
+ unsigned long size;
+ unsigned long long delta;
+};
+
+/*
+ * Dirty L2 on the source CPU:
+ */
+__init static void source_handler(void *__data)
+{
+ struct flush_data *data = __data;
+
+ if (smp_processor_id() != data->source)
+ return;
+
+ /*
+ * Make sure the cache is quiet on this CPU,
+ * before starting measurement:
+ */
+ read_cache(data->cache, data->size);
+
+ data->delta = sched_clock();
+ touch_cache(data->cache, data->size);
+}
+
+/*
+ * Dirty the L2 cache on this CPU and then access the shared
+ * buffer. (which represents the working set of the migrated task.)
+ */
+__init static void target_handler(void *__data)
+{
+ struct flush_data *data = __data;
+
+ if (smp_processor_id() != data->target)
+ return;
+
+ touch_cache(data->cache, data->size);
+ data->delta = sched_clock() - data->delta;
+ /*
+ * Make sure the cache is quiet, so that it does not interfere
+ * with the next run on this CPU:
+ */
+ read_cache(data->cache, data->size);
+}
+
+/*
+ * Measure the cache-cost of one task migration. Returns in units of nsec.
+ */
+__init static unsigned long long measure_one(void *cache, unsigned long size,
+ int source, int target)
+{
+ struct flush_data data;
+
+ data.source = source;
+ data.target = target;
+ data.size = size;
+ data.cache = cache;
+
+ if (on_each_cpu(source_handler, &data, 1, 1) != 0) {
+ printk("measure_one: timed out waiting for other CPUs\n");
+ return -1;
+ }
+ if (on_each_cpu(target_handler, &data, 1, 1) != 0) {
+ printk("measure_one: timed out waiting for other CPUs\n");
+ return -1;
+ }
+
+ return data.delta;
+}
+
+/*
+ * Maximum cache-size that the scheduler should try to measure.
+ * Architectures with larger caches should tune this up during
+ * bootup. Gets used in the domain-setup code (i.e. during SMP
+ * bootup).
+ */
+__initdata unsigned int max_cache_size;
+
+static int __init setup_max_cache_size(char *str)
+{
+ get_option(&str, &max_cache_size);
+ return 1;
+}
+
+__setup("max_cache_size=", setup_max_cache_size);
+
+/*
+ * The migration cost is a function of 'domain distance'. Domain
+ * distance is the number of steps a CPU has to iterate down its
+ * domain tree to share a domain with the other CPU. The farther
+ * two CPUs are from each other, the larger the distance gets.
+ *
+ * Note that we use the distance only to cache measurement results,
+ * the distance value is not used numerically otherwise. When two
+ * CPUs have the same distance it is assumed that the migration
+ * cost is the same. (this is a simplification but quite practical)
+ */
+#define MAX_DOMAIN_DISTANCE 32
+
+static __initdata unsigned long long migration_cost[MAX_DOMAIN_DISTANCE];
+
+/*
+ * Allow override of migration cost - in units of microseconds.
+ * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
+ * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
+ */
+static int __init migration_cost_setup(char *str)
+{
+ int ints[MAX_DOMAIN_DISTANCE+1], i;
+
+ str = get_options(str, ARRAY_SIZE(ints), ints);
+
+ printk("#ints: %d\n", ints[0]);
+ for (i = 1; i <= ints[0]; i++) {
+ migration_cost[i-1] = (unsigned long long)ints[i]*1000;
+ printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
+ }
+ return 1;
+}
+
+__setup ("migration_cost=", migration_cost_setup);
+
+/*
+ * Global multiplier (divisor) for migration-cutoff values,
+ * in percentiles. E.g. use a value of 150 to get 1.5 times
+ * longer cache-hot cutoff times.
+ *
+ * (We scale it from 100 to 128 to long long handling easier.)
+ */
+
+#define MIGRATION_FACTOR_SCALE 128
+
+static __initdata unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
+
+static int __init setup_migration_factor(char *str)
+{
+ get_option(&str, &migration_factor);
+ migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
+ return 1;
+}
+
+__setup("migration_factor=", setup_migration_factor);
+
+static __initdata unsigned int migration_debug;
+
+static int __init setup_migration_debug(char *str)
+{
+ get_option(&str, &migration_debug);
+ return 1;
+}
+
+__setup("migration_debug=", setup_migration_debug);
+
+/*
+ * Estimated distance of two CPUs, measured via the number of domains
+ * we have to pass for the two CPUs to be in the same span:
+ */
+__init static unsigned long cpu_distance(int cpu1, int cpu2)
+{
+ unsigned long distance = 0;
+ struct sched_domain *sd;
+
+ for_each_domain(cpu1, sd) {
+ WARN_ON(!cpu_isset(cpu1, sd->span));
+ if (cpu_isset(cpu2, sd->span))
+ return distance;
+ distance++;
+ }
+ if (distance >= MAX_DOMAIN_DISTANCE) {
+ WARN_ON(1);
+ distance = MAX_DOMAIN_DISTANCE-1;
+ }
+
+ return distance;
+}
+
+/*
+ * Measure a series of task migrations and return the average
+ * result. Since this code runs early during bootup the system
+ * is 'undisturbed' and the average latency makes sense.
+ *
+ * The algorithm in essence auto-detects the relevant cache-size,
+ * so it will properly detect different cachesizes for different
+ * cache-hierarchies, depending on how the CPUs are connected.
+ *
+ * Architectures can prime the upper limit of the search range via
+ * max_cache_size, otherwise the search range defaults to 20MB...64K.
+ */
+#define SEARCH_SCOPE 2
+#define MIN_CACHE_SIZE (64*1024U)
+#define DEFAULT_CACHE_SIZE (5*1024*1024U)
+#define ITERATIONS 2
+
+__init static unsigned long long measure_cacheflush_time(int cpu1, int cpu2)
+{
+ unsigned long long cost = 0, cost1 = 0, cost2 = 0;
+ unsigned int size, cache_size = 0;
+ void *cache;
+ int i;
+
+ /*
+ * Search from max_cache_size*5 down to 64K - the real relevant
+ * cachesize has to lie somewhere inbetween.
+ */
+ if (max_cache_size)
+ size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
+ else
+ /*
+ * Since we have no estimation about the relevant
+ * search range
+ */
+ size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
+
+ if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
+ printk("cpu %d and %d not both online!\n", cpu1, cpu2);
+ return 0;
+ }
+ /*
+ * We allocate 2*size so that read_cache() can access a
+ * larger buffer:
+ */
+ cache = vmalloc(2*size);
+ if (!cache) {
+ printk("could not vmalloc %d bytes for cache!\n", 2*size);
+ return 1000000; // return 1 msec on very small boxen
+ }
+ memset(cache, 0, 2*size);
+
+ while (size >= MIN_CACHE_SIZE) {
+ /*
+ * Measure the migration cost of 'size' bytes, over an
+ * average of 10 runs:
+ *
+ * (We perturb the cache size by a small (0..4k)
+ * value to compensate size/alignment related artifacts.
+ * We also subtract the cost of the operation done on
+ * the same CPU.)
+ */
+ cost1 = 0;
+ for (i = 0; i < ITERATIONS; i++) {
+ cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
+ cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
+ }
+
+ cost2 = 0;
+ for (i = 0; i < ITERATIONS; i++) {
+ cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
+ cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
+ }
+ if (cost1 > cost2) {
+ if (cost < cost1 - cost2) {
+ cost = cost1 - cost2;
+ cache_size = size;
+ }
+ }
+ if (migration_debug)
+ printk("-> [%d][%d][%7d] %3ld.%ld (%ld): (%8Ld %8Ld %8Ld)\n",
+ cpu1, cpu2, size,
+ (long)cost / 1000000,
+ ((long)cost / 100000) % 10,
+ cpu_distance(cpu1, cpu2),
+ cost1, cost2, cost1-cost2);
+ /*
+ * Iterate down the cachesize (in a non-power-of-2
+ * way to avoid artifacts) in 5% decrements:
+ */
+ size = size * 19 / 20;
+ }
+ /*
+ * Get the per-iteration migration cost:
+ */
+ do_div(cost, 2*ITERATIONS);
+
+ if (migration_debug)
+ printk("[%d][%d] cache size found: %d, cost: %Ld\n",
+ cpu1, cpu2, cache_size, cost);
+
+ vfree(cache);
+
+ /*
+ * A task is considered 'cache cold' if at least 2 times
+ * the worst-case cost of migration has passed.
+ *
+ * (this limit is only listened to if the load-balancing
+ * situation is 'nice' - if there is a large imbalance we
+ * ignore it for the sake of CPU utilization and
+ * processing fairness.)
+ */
+ return 2 * cost * migration_factor / MIGRATION_FACTOR_SCALE;
+}
+
+void __devinit calibrate_migration_costs(void)
+{
+ int cpu1 = -1, cpu2 = -1, cpu;
+ struct sched_domain *sd;
+ unsigned long distance, max_distance = 0;
+ unsigned long long cost;
+
+ for_each_online_cpu(cpu1)
+ printk(" [%02d]", cpu1);
+ printk("\n");
+ /*
+ * First pass - calculate the cacheflush times:
+ */
+ for_each_online_cpu(cpu1) {
+ for_each_online_cpu(cpu2) {
+ if (cpu1 == cpu2)
+ continue;
+ distance = cpu_distance(cpu1, cpu2);
+ max_distance = max(max_distance, distance);
+ /*
+ * Do we have the result cached already?
+ */
+ if (migration_cost[distance])
+ cost = migration_cost[distance];
+ else {
+ cost = measure_cacheflush_time(cpu1, cpu2);
+ migration_cost[distance] = cost;
+ }
+ }
+ }
+ /*
+ * Second pass - update the sched domain hierarchy with
+ * the new cache-hot-time estimations:
+ */
+ for_each_online_cpu(cpu) {
+ distance = 0;
+ for_each_domain(cpu, sd) {
+ sd->cache_hot_time = migration_cost[distance];
+ distance++;
+ }
+ }
+ /*
+ * Print the matrix:
+ */
+ printk("---------------------\n");
+ printk("migration cost matrix (max_cache_size: %d, cpu: %ld MHz):\n",
+ max_cache_size,
+#ifdef CONFIG_X86
+ cpu_khz/1000
+#else
+ -1
+#endif
+ );
+ printk("---------------------\n");
+ printk(" ");
+ for_each_online_cpu(cpu1) {
+ printk("[%02d]: ", cpu1);
+ for_each_online_cpu(cpu2) {
+ if (cpu1 == cpu2) {
+ printk(" - ");
+ continue;
+ }
+ distance = cpu_distance(cpu1, cpu2);
+ max_distance = max(max_distance, distance);
+ cost = migration_cost[distance];
+ printk(" %2ld.%ld(%ld)", (long)cost / 1000000,
+ ((long)cost / 100000) % 10, distance);
+ }
+ printk("\n");
+ }
+ printk("---------------------\n");
+ printk("cacheflush times [%ld]:", max_distance+1);
+ for (distance = 0; distance <= max_distance; distance++) {
+ cost = migration_cost[distance];
+ printk(" %ld.%ld (%Ld)", (long)cost / 1000000,
+ ((long)cost / 100000) % 10, cost);
+ }
+ printk("\n");
+ printk("---------------------\n");
+
+}
+
#ifdef ARCH_HAS_SCHED_DOMAIN
extern void __devinit arch_init_sched_domains(void);
@@ -4820,6 +5268,10 @@ static void __devinit arch_init_sched_do
#endif
cpu_attach_domain(sd, i);
}
+ /*
+ * Tune cache-hot values:
+ */
+ calibrate_migration_costs();
}
#ifdef CONFIG_HOTPLUG_CPU
--- linux/arch/ia64/kernel/domain.c.orig
+++ linux/arch/ia64/kernel/domain.c
@@ -358,6 +358,10 @@ next_sg:
#endif
cpu_attach_domain(sd, i);
}
+ /*
+ * Tune cache-hot values:
+ */
+ calibrate_migration_costs();
}
void __devinit arch_destroy_sched_domains(void)
--- linux/arch/i386/kernel/smpboot.c.orig
+++ linux/arch/i386/kernel/smpboot.c
@@ -873,6 +873,7 @@ static void smp_tune_scheduling (void)
cachesize = 16; /* Pentiums, 2x8kB cache */
bandwidth = 100;
}
+ max_cache_size = cachesize * 1024;
}
}
--- linux/include/asm-ia64/topology.h.orig
+++ linux/include/asm-ia64/topology.h
@@ -51,7 +51,6 @@ void build_cpu_to_node_map(void);
.max_interval = 320, \
.busy_factor = 320, \
.imbalance_pct = 125, \
- .cache_hot_time = (10*1000000), \
.cache_nice_tries = 1, \
.per_cpu_gain = 100, \
.flags = SD_LOAD_BALANCE \
@@ -73,7 +72,6 @@ void build_cpu_to_node_map(void);
.max_interval = 320, \
.busy_factor = 320, \
.imbalance_pct = 125, \
- .cache_hot_time = (10*1000000), \
.cache_nice_tries = 1, \
.per_cpu_gain = 100, \
.flags = SD_LOAD_BALANCE \
--- linux/include/linux/topology.h.orig
+++ linux/include/linux/topology.h
@@ -86,7 +86,6 @@
.max_interval = 2, \
.busy_factor = 8, \
.imbalance_pct = 110, \
- .cache_hot_time = 0, \
.cache_nice_tries = 0, \
.per_cpu_gain = 25, \
.flags = SD_LOAD_BALANCE \
@@ -112,7 +111,6 @@
.max_interval = 4, \
.busy_factor = 64, \
.imbalance_pct = 125, \
- .cache_hot_time = (5*1000000/2), \
.cache_nice_tries = 1, \
.per_cpu_gain = 100, \
.flags = SD_LOAD_BALANCE \
--- linux/include/linux/sched.h.orig
+++ linux/include/linux/sched.h
@@ -527,7 +527,17 @@ extern cpumask_t cpu_isolated_map;
extern void init_sched_build_groups(struct sched_group groups[],
cpumask_t span, int (*group_fn)(int cpu));
extern void cpu_attach_domain(struct sched_domain *sd, int cpu);
+
#endif /* ARCH_HAS_SCHED_DOMAIN */
+
+/*
+ * Maximum cache size the migration-costs auto-tuning code will
+ * search from:
+ */
+extern unsigned int max_cache_size;
+
+extern void calibrate_migration_costs(void);
+
#endif /* CONFIG_SMP */
--- linux/include/asm-i386/topology.h.orig
+++ linux/include/asm-i386/topology.h
@@ -75,7 +75,6 @@ static inline cpumask_t pcibus_to_cpumas
.max_interval = 32, \
.busy_factor = 32, \
.imbalance_pct = 125, \
- .cache_hot_time = (10*1000000), \
.cache_nice_tries = 1, \
.per_cpu_gain = 100, \
.flags = SD_LOAD_BALANCE \
--- linux/include/asm-ppc64/topology.h.orig
+++ linux/include/asm-ppc64/topology.h
@@ -46,7 +46,6 @@ static inline int node_to_first_cpu(int
.max_interval = 32, \
.busy_factor = 32, \
.imbalance_pct = 125, \
- .cache_hot_time = (10*1000000), \
.cache_nice_tries = 1, \
.per_cpu_gain = 100, \
.flags = SD_LOAD_BALANCE \
--- linux/include/asm-x86_64/topology.h.orig
+++ linux/include/asm-x86_64/topology.h
@@ -48,7 +48,6 @@ static inline cpumask_t __pcibus_to_cpum
.max_interval = 32, \
.busy_factor = 32, \
.imbalance_pct = 125, \
- .cache_hot_time = (10*1000000), \
.cache_nice_tries = 1, \
.per_cpu_gain = 100, \
.flags = SD_LOAD_BALANCE \
--- linux/include/asm-mips/mach-ip27/topology.h.orig
+++ linux/include/asm-mips/mach-ip27/topology.h
@@ -24,7 +24,6 @@ extern unsigned char __node_distances[MA
.max_interval = 32, \
.busy_factor = 32, \
.imbalance_pct = 125, \
- .cache_hot_time = (10*1000), \
.cache_nice_tries = 1, \
.per_cpu_gain = 100, \
.flags = SD_LOAD_BALANCE \
[Index of Archives]
[Kernel Newbies]
[Netfilter]
[Bugtraq]
[Photo]
[Stuff]
[Gimp]
[Yosemite News]
[MIPS Linux]
[ARM Linux]
[Linux Security]
[Linux RAID]
[Video 4 Linux]
[Linux for the blind]
[Linux Resources]